研究生: |
歐書宏 Oh, Su-Hong |
---|---|
論文名稱: |
新穎二十員環鍺釩酸鹽的合成、結構與性質研究 Synthesis, Structure and Properties of a Novel 20-Ring Vanadogermanate |
指導教授: |
王素蘭
Wang, Sue-Lein |
口試委員: |
李光華
Lii, Kwang-Hwa 林嘉和 Lin, Chia-Her |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 142 |
中文關鍵詞: | 鍺釩酸鹽 、孔隧 |
外文關鍵詞: | Vanadogermanate, channel |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究論文以合成大環釩鍺酸鹽為研究目標。利用中溫中壓水熱法進行反應,合成四個釩鍺酸鹽化合物 S1-S4,其中S1是已知的結構{Ge8V14}團簇,S2-S4則是新穎性結構。所有化合物皆是以單晶X光繞射儀收集數據後進行結構解析,除了探討化合物之間的合成條件與結構關聯性,也針對S3化合物進行離子交換實驗與氣體吸附性質研究。
S1-S4 四個釩鍺酸鹽化合物,其不同的維度與結構連結形式,是藉由調整反應系統中氫氟酸和金屬比例而得到。首先,從產生{Ge8V14}團簇零維結構S1 的合成條件開始,加入特定比例氫氟酸(Ge/HF=1/12)後,則可引導出以{Ge8V14}團簇為主體、由鍺氧氟(GeO2F3)多面體為架橋所建構的二維層狀結構S2;當上述氫氟酸比例降低(Ge/HF=1/2.4),則可生成S3 結構,是由同樣{Ge8V14}團簇以釩氧氟(VO2F6)多面體為架橋所建構而成,S3 是目前釩鍺酸鹽中發現擁有最大二十員環孔隧的三維結構。當S3 合成條件中鍺釩金屬比例從1/1.6 減少為1/0.28,則改變了團簇主體,生成了以Ge7 團簇為主體透過T4 共角方式連接釩二聚體所形成的二維層狀結構S4。S3 的三維孔隧結構可吸附二氧化碳氣體,將其結構中有機胺模板置換成鉀離子後,原本的二氧化碳氣體吸附量可從0.61 mmol/g 增加為1.43 mmol/g,此吸附性質是釩鍺酸鹽中未曾報導過的。另外,S4 浸泡水中五天後,仍保有結晶性,此水穩定性是鍺酸鹽結構中相當罕見,可以由S4 結構中有機胺模板的排列來解釋,也進一步印證我們在有機胺模板上非親水的碳端可保護骨架可達到水穩定性的觀點。
綜合上述,本研究論文利用氫氟酸的策略,成功合成了第一個新穎、具有二十員環孔隧及二氧化碳氣體吸附性質的釩鍺酸鹽結構,不但突破文獻中最大十六員環的瓶頸,也跳脫出釩鍺酸鹽長久以來使用金屬錯合物作為架橋造成孔洞使用性不佳的問題。
In this thesis, we study the reaction of hydrothermal method, which produces the rare vanadogermanat.S2-S4 are novel structure except for S1. All structures were analyzed after the characterization of single crystal X-ray diffraction, and closely discussed after their physical properties. S1 is a zero-dimensional structure(Ge8V14). After bring synthesized via adding hydrofluoric acid in certain conditions, it produces the same cluster of two dimensional S2 (that is constructed mainly by Ge8V14 clusters and crosslinked by oxyfluoride.). For the first time, the pore size of inorganic vanadogemanate structure is pushed up to the size of the largest 20-membered ring. Not only the structure of it exhibits void space (SAV: 55.3%) but also shows the highest CO2 adsorption property in vanadogermanate. Additionally, when the vanadium is reduced from the reaction condition of S3, it will produce a two-dimensional S4 structured by Ge7 clusters and bridged by vanadate.The synthetic system developed in this thesis leads to different dimensions and forms of vanadogermanat by adjusting the amount of hydrofluoric acid in the same condition, which establishes a valuable synthetical system for reference in the future. For the first time, S3 possess a special applicability, which performs great adsorption to CO2. Later, by ionic exchange, we extracted the organic amine template and obtained more available space for CO2 adsorption. The S4 structure exhibits extreme stability, as for example, it could be immersed in water for five days without undergoing disintegration. Through observation, we discovered that the framework’s structure was protected by carbon atoms, which adds aquatic stability. In conclusion, by strategic experiments, this research successfully developed the rare and special vanadogermanat. Both the structure and property in these compounds performed uniquely, and could be a potential substance for further investigation and development in the future.
[1] aY. Takashima, V. M. Martínez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto, S. Kitagawa, Nat. Commun. 2011, 2, 168; bS. Xiong, Y. He, R. Krishna, B. Chen, Z. Wang, Cryst. Growth Des. 2013, 13, 2670-2674; cJ. He, J. Wang, Y. Chen, J. Zhang, D. Duan, Y. Wang, Z. Yan, Chem. Commun. 2014, 50, 7063-7066; dX. Su, L. Bromberg, V. Martis, F. Simeon, A. Huq, T. A. Hatton, ACS Appl. Mater. Interfaces 2017, 9, 11299-11306; eA. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998-17999; fD. J. Levine, T. Runčevski, M. T. Kapelewski, B. K. Keitz, J. Oktawiec, D. A. Reed, J. A. Mason, H. Z. H. Jiang, K. A. Colwell, C. M. Legendre, S. A. FitzGerald, J. R. Long, J. Am. Chem. Soc. 2016, 138, 10143-10150; gZ.-J. Zhang, W. Shi, Z. Niu, H.-H. Li, B. Zhao, P. Cheng, D.-Z. Liao, S.-P. Yan, Chem. Commun. 2011, 47, 6425-6427.
[2] R. M. Barrer, in Stud. Surf. Sci. Catal., Vol. 24 (Eds.: B. Držaj, S. Hočevar, S. Pejovnik), Elsevier, 1985, pp. 1-26.
[3] G. J. C., G. Ani, H. C. B., M. A. R., J. Appl. Polym. Sci. 2004, 93, 1102-1109.
[4] G. T. Kerr, Science 1963, 140, 1412.
[5] C. A. K., F. Gérard, L. Thierry, Angew. Chem. 1999, 111, 3466-3492.
[6] S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, E. M. Flanigen, J. Am. Chem. Soc. 1982, 104, 1146-1147.
[7] M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowdert, Nature 1988, 331, 698.
[8] aP. B. Moore, J. Shen, Nature 1983, 306, 356; bM. Estermann, L. B. McCusker, C. Baerlocher, A. Merrouche, H. Kessler, Nature 1991, 352, 320; cZ. Yaming, Z. Haoguo, C. Zhenxia, C. Minqin, X. Yan, Z. Haoyu, Z. Dongyuan, Angew. Chem. 2001, 113, 2224-2226; dQ. Huo, R. Xu, S. Li, Z. Ma, J. M. Thomas, R. H. Jones, A. M. Chippindale, J. Chem. Soc., Chem. Commun. 1992, 875-876; eL. Jing, L. Jiyang, Y. Jihong, C. Peng, F. Qianrong, S. Fuxing, X. Ruren, Angew. Chem. Int. Ed. 2006, 45, 2546-2548.
[9] H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276.
[10] aJ.-S. Wang, F.-Z. Jin, H.-C. Ma, X.-B. Li, M.-Y. Liu, J.-L. Kan, G.-J. Chen, Y.-B. Dong, Inorg. Chem. 2016, 55, 6685-6691; bM. Sadakiyo, T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2014, 136, 13166-13169; cA. Pal, S. Chand, M. C. Das, Inorg. Chem. 2017, 56, 13991-13997; dX. Zhao, X. Song, Y. Li, Z. Chang, L. Chen, ACS Appl. Mater. Interfaces 2018, 10, 5633-5640; eS. Rojas, I. Colinet, D. Cunha, T. Hidalgo, F. Salles, C. Serre, N. Guillou, P. Horcajada, ACS Omega 2018, 3, 2994-3003.
[11] D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 2007, 36, 770-818.
[12] aC.-H. Lin, S.-L. Wang, K.-H. Lii, J. Am. Chem. Soc. 2001, 123, 4649-4650; bY.-C. Liao, F.-L. Liao, W.-K. Chang, S.-L. Wang, J. Am. Chem. Soc. 2004, 126, 1320-1321; cY.-C. Liao, Y.-C. Jiang, S.-L. Wang, J. Am. Chem. Soc. 2005, 127, 12794-12795; dY.-C. Liao, C.-H. Lin, S.-L. Wang, J. Am. Chem. Soc. 2005, 127, 9986-9987; eY.-L. Lai, K.-H. Lii, S.-L. Wang, J. Am. Chem. Soc. 2007, 129, 5350-5351; fY.-C. Yang, S.-L. Wang, J. Am. Chem. Soc. 2008, 130, 1146-1147; gJ. Pei‐Ci, Y. Ya‐Ching, L. Yi‐Chun, L. Wei‐Ren, W. Sue‐Lein, Angew. Chem. 2009, 121, 756-759; hH. Shu‐Hao, L. Chia‐Her, W. Wei‐Chang, W. Sue‐Lein, Angew. Chem. 2009, 121, 6240-6243; iJ. Pei‐Ci, C. Niang‐Tsu, W. Sue‐Lein, Angew. Chem. Int. Ed. 2010, 49, 4200-4204; jH. Shu‐Hao, W. Sue‐Lein, Angew. Chem. Int. Ed. 2011, 50, 5319-5322; kY.-C. Chang, S.-L. Wang, J. Am. Chem. Soc. 2012, 134, 9848-9851; lH.-Y. Lin, C.-Y. Chin, H.-L. Huang, W.-Y. Huang, M.-J. Sie, L.-H. Huang, Y.-H. Lee, C.-H. Lin, K.-H. Lii, X. Bu, S.-L. Wang, Science 2013; mH. Hui‐Lin, W. Sue‐Lein, Angew. Chem. Int. Ed. 2015, 54, 965-968; nM.-J. Sie, C.-H. Lin, S.-L. Wang, J. Am. Chem. Soc. 2016, 138, 6719-6722.
[1] A. K. Cheetham, G. Férey, T. Loiseau, Angewandte Chemie 1999, 111, 3466-3492.
[2] S. S.-Y. Chui, S. M.-F. Lo, J. P. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148-1150.
[3] aH. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276; bJ. L. Rowsell, E. C. Spencer, J. Eckert, J. A. Howard, O. M. Yaghi, Science 2005, 309, 1350-1354; cT. Devic, O. David, M. Valls, J. Marrot, F. Couty, G. Férey, J. Am. Chem. Soc. 2007, 129, 12614-12615.
[4] aM. E. Davis, Nature 2002, 417, 813; bM. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'keeffe, O. M. Yaghi, Science 2002, 295, 469-472; cP. M. Forster, J. Eckert, J.-S. Chang, S.-E. Park, G. Férey, A. K. Cheetham, J. Am. Chem. Soc. 2003, 125, 1309-1312; dJ. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450-1459; eP. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, Nature materials 2010, 9, 172; fJ.-R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P. B. Balbuena, H.-C. Zhou, Coord. Chem. Rev. 2011, 255, 1791-1823.
[5] A. L. Barra, D. Gatteschi, B. Tsukerblatt, J. Doering, A. Mueller, L. C. Brunel, Inorganic Chemistry 1992, 31, 5132-5134.
[6] Y. Gao, Y. Xu, K. Huang, Z. Han, C. Hu, Dalton Transactions 2012, 41, 6122-6129.
[7] N. Wang, Q.-Y. Lin, J. Feng, Y.-L. Zhao, Y.-J. Wang, S.-K. Li, Inorganica Chimica Acta 2010, 363, 3399-3406.
[8] Y. Gao, Y. Xu, S. Li, Z. Han, Y. Cao, F. Cui, C. Hu, Journal of Coordination Chemistry 2010, 63, 3373-3383.
[9] Y. Qi, Y. Li, E. Wang, H. Jin, Z. Zhang, X. Wang, S. Chang, Journal of Solid State Chemistry 2007, 180, 382-389.
[10] J. Ru, X. Ma, Y. Cui, M. Guo, J. Chen, X.-X. Li, Crystal Growth & Design 2017, 17, 1384-1389.
[11] J. Zhou, J. Zhang, W. H. Fang, G. Y. Yang, Chemistry–A European Journal 2010, 16, 13253-13261.
[12] A. Tripathi, T. Hughbanks, A. Clearfield, Journal of the American Chemical Society 2003, 125, 10528-10529.
[13] Y. Xu, L.-B. Nie, D. Zhu, Y. Song, G.-P. Zhou, W.-S. You, Crystal growth & design 2007, 7, 925-929.
[14] J. Zhou, J.-W. Zhao, Q. Wei, J. Zhang, G.-Y. Yang, Journal of the American Chemical Society 2014, 136, 5065-5071.
[15] J. Plévert, T. M. Gentz, T. L. Groy, M. O'Keeffe, O. M. Yaghi, Chemistry of materials 2003, 15, 714-718.
[16] Q. Pan, J. Li, X. Ren, Z. Wang, G. Li, J. Yu, R. Xu, Chemistry of Materials 2008, 20, 370-372.
[17] N. N. Julius, A. Choudhury, C. N. R. Rao, Journal of Solid State Chemistry 2003, 170, 124-129.
[18] E. De Boer, Y. Van Kooyk, M. Tromp, H. Plat, R. Wever, Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1986, 869, 48-53.
[19] B. S. Bassil, U. Kortz, A. S. Tigan, J. M. Clemente-Juan, B. Keita, P. de Oliveira, L. Nadjo, Inorganic chemistry 2005, 44, 9360-9368.
[20] H.-Y. Guo, X. Zhang, L.-N. Xiao, X.-B. Cui, Dalton Transactions 2017, 46, 8022-8026.
[21] L. Shi, C. Bonneau, Y. Li, J. Sun, H. Yue, X. Zou, Crystal Growth and Design 2008, 8, 3695-3699.
[22] X. Ren, Q. Pan, J. Liu, Y. Li, F. Wang, J. Li, Y. Xu, L. Li, CrystEngComm 2014, 16, 9545-9554.
[23] P. C. Jhang, Y. C. Yang, Y. C. Lai, W. R. Liu, S. L. Wang, Angewandte Chemie International Edition 2009, 48, 742-745.
[24] T. Whitfield, X. Wang, A. Jacobson, Inorganic chemistry 2003, 42, 3728-3733.
[25] R. B. Wanty, M. B. Goldhaber, Geochimica et Cosmochimica Acta 1992, 56, 1471-1483.
[26] D. C. Crans, A. S. Tracey, ChemInform 1999, 30, no-no.
[27] B. Guo, A. K. Inge, C. Bonneau, J. Sun, K. E. Christensen, Z.-Y. Yuan, X. Zou, Inorganic chemistry 2010, 50, 201-207.
[28] G. M. Burch, J. R. Van Wazer, Journal of the Chemical Society A: Inorganic, Physical, Theoretical 1966, 586-589.
[29] L. Krivosudský, P. Schwendt, R. Gyepes, J. Filo, Inorganic Chemistry Communications 2014, 49, 48-51.
[30] Q. B. Nguyen, K.-H. Lii, Inorganic chemistry 2012, 51, 9150-9152.
[31] J. He, P. Zhou, N. Jiao, S. Ma, K. Zhang, R. Wang, L. Sun, Scientific reports 2014, 4, 4014.
[32] X. Zou, T. Conradsson, M. Klingstedt, M. S. Dadachov, M. O'keeffe, Nature 2005, 437, 716.
[33] T. K. Maji, R. Matsuda, S. Kitagawa, Nature materials 2007, 6, 142.
[34] J. Liang, J. Su, X. Luo, Y. Wang, H. Zheng, H. Chen, X. Zou, J. Lin, J. Sun, Angewandte Chemie International Edition 2015, 54, 7290-7294.