研究生: |
陳冠霖 Chen, Kuan-Lin |
---|---|
論文名稱: |
自駕車之直觀感知演算法 Direct Perception Algorithms for Autonomous Driving |
指導教授: |
劉晉良
Liu, Jinn-Liang |
口試委員: |
李金龍
Li, Chin-Lung 陳仁純 Chen, Ren-Chuen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 計算與建模科學研究所 Institute of Computational and Modeling Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 30 |
中文關鍵詞: | 自駕車 、直觀感知 、深度學習 |
外文關鍵詞: | Autonomous Driving, Direct Perception, Deep Learning |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於由普林斯頓大學Chen et al. in Proc. IEEE Int. Conf. Comput. Vis., 2722-2730, 2015 [1] 之論文提出的「自駕車之直觀感知方法」,這篇論文提出一個更完善的直觀感知架構與車輛控制演算法。我們在自駕車模擬平台TORCS之下設計出新的控制程式,並建構一個資料庫由圖片以及相對應5個特徵值組成,這是由13個特徵值版本[1]改良的。由我建構出來的資料庫來進行AlexNet之卷積神經網路(convolutional neural network) 迴歸訓練與執行自駕車模擬測試。我也採用不同的網路架構GoogLeNet進行訓練,並與AlexNet比較結果。實驗結果顯示兩者的training loss皆收斂相當完美,而且實際跑模擬顯示CNN自駕車能夠在未經模型學習過的賽道成功進行自動駕駛。
Based on the direct perception approach of autonomous driving proposed by Chen et al. in Proc. IEEE Int. Conf. Comput. Vis., 2722-2730, 2015 [1], we propose a more general direct perception framework and control algorithm in this thesis. We design a new controller in TORCS simulator and use it to collect a dataset of new images with sensors and 5 affordance indicators as compared to 13 indicators in [1]. We then use the dataset that I have generated to develop a CNN (convolutional neural network) algorithm in AlexNet for regression training and self-driving testing. I also trained a GoogLeNet (a different CNN) algorithm and compare it with AlexNet. The training loss of both algorithms converges satisfactorily and testing results show that the self-driving CNN car can successfully run on different tracks unseen by our pre-trained models.
References
[1] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, DeepDriving: Learning affordance for direct perception in autonomous driving, Proc. IEEE Int. Conf. Comput. Vis., 2722-2730, 2015.
[2] C. Chen, Extracting Cognition out of Images for the Purpose of Autonomous Driving, Ph.D. Thesis, Princeton University, USA, 2016.
[3] M. Al-Qizwini, et al., Deep learning algorithm for autonomous driving using GoogLeNet, IEEE Intelligent Vehicles Symposium (IV), 89-96, 2017.
[4] B. Wymann, et al., TORCS: The open racing car simulator, Software available at http://torcs.sourceforge.net 4.6, 2000.
[5] Wikipedia Caffe (software)
available at https://en.wikipedia.org/wiki/Caffe_(software)
[6] Wikipedia AlexNet
available at https://en.wikipedia.org/wiki/AlexNet
[7] Wikipedia Convolutional neural network
available at https://en.wikipedia.org/wiki/Convolutional_neural_network