簡易檢索 / 詳目顯示

研究生: 陳冠霖
Chen, Kuan-Lin
論文名稱: 自駕車之直觀感知演算法
Direct Perception Algorithms for Autonomous Driving
指導教授: 劉晉良
Liu, Jinn-Liang
口試委員: 李金龍
Li, Chin-Lung
陳仁純
Chen, Ren-Chuen
學位類別: 碩士
Master
系所名稱: 理學院 - 計算與建模科學研究所
Institute of Computational and Modeling Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 30
中文關鍵詞: 自駕車直觀感知深度學習
外文關鍵詞: Autonomous Driving, Direct Perception, Deep Learning
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於由普林斯頓大學Chen et al. in Proc. IEEE Int. Conf. Comput. Vis., 2722-2730, 2015 [1] 之論文提出的「自駕車之直觀感知方法」,這篇論文提出一個更完善的直觀感知架構與車輛控制演算法。我們在自駕車模擬平台TORCS之下設計出新的控制程式,並建構一個資料庫由圖片以及相對應5個特徵值組成,這是由13個特徵值版本[1]改良的。由我建構出來的資料庫來進行AlexNet之卷積神經網路(convolutional neural network) 迴歸訓練與執行自駕車模擬測試。我也採用不同的網路架構GoogLeNet進行訓練,並與AlexNet比較結果。實驗結果顯示兩者的training loss皆收斂相當完美,而且實際跑模擬顯示CNN自駕車能夠在未經模型學習過的賽道成功進行自動駕駛。


    Based on the direct perception approach of autonomous driving proposed by Chen et al. in Proc. IEEE Int. Conf. Comput. Vis., 2722-2730, 2015 [1], we propose a more general direct perception framework and control algorithm in this thesis. We design a new controller in TORCS simulator and use it to collect a dataset of new images with sensors and 5 affordance indicators as compared to 13 indicators in [1]. We then use the dataset that I have generated to develop a CNN (convolutional neural network) algorithm in AlexNet for regression training and self-driving testing. I also trained a GoogLeNet (a different CNN) algorithm and compare it with AlexNet. The training loss of both algorithms converges satisfactorily and testing results show that the self-driving CNN car can successfully run on different tracks unseen by our pre-trained models.

    Contents Abstract i Acknowledgment iii 1 Introduction 1 1.1 Three General Approaches for Autonomous Driving . . . . . . . 1 1.2 Direct Perception . . . . . . . . . . . . . . . . . . .. . . . 2 1.3 DeepDriving Platform . . . . . . . . . . . . . . . . . . . . . 3 2 System Architecture 5 2.1 TORCS . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 5 2.2 CAFFE . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 6 2.3 Autonomous Driving . . . . . . . . . . . . . . . . . . . . . . 6 3 Controllers 8 3.1 Bernhard’s Controller . . . . . . . . . . . . .. . . . . . . . 8 3.2 DeepDriving Controller (13 Indicators) . . . . . . . .. . . .. 9 3.3 Our Controller (5 Indicators) . . . . . . . . . . . .. . . . . 9 4 Parameter Definitions 11 5 Data Generation 14 5.1 Data Collecting Procedure . . . . . . . . . . . . . . . . . . 14 5.2 Key Elements in Data Generation . . . . . . . . . . . . . . . 15 6 CNN Models 17 6.1 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2 GoogLeNet . . . . . . . . . . . . . . . . . . .. . . . . . . .18 7 Results 20 7.1 Training Results . . . . . . . . . . . . . . . .. . . . . . . 20 7.2 Autonomous Driving Performance Evaluation . . . . . . . . . . 22 7.3 Comparison of MAE between AlexNet and GoogLeNet . . . . . . . 24 8 Conclusions 26 Appendix-Controller Algorithms 27 References 30

    References

    [1] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, DeepDriving: Learning affordance for direct perception in autonomous driving, Proc. IEEE Int. Conf. Comput. Vis., 2722-2730, 2015.

    [2] C. Chen, Extracting Cognition out of Images for the Purpose of Autonomous Driving, Ph.D. Thesis, Princeton University, USA, 2016.

    [3] M. Al-Qizwini, et al., Deep learning algorithm for autonomous driving using GoogLeNet, IEEE Intelligent Vehicles Symposium (IV), 89-96, 2017.

    [4] B. Wymann, et al., TORCS: The open racing car simulator, Software available at http://torcs.sourceforge.net 4.6, 2000.

    [5] Wikipedia Caffe (software)
    available at https://en.wikipedia.org/wiki/Caffe_(software)

    [6] Wikipedia AlexNet
    available at https://en.wikipedia.org/wiki/AlexNet

    [7] Wikipedia Convolutional neural network
    available at https://en.wikipedia.org/wiki/Convolutional_neural_network

    QR CODE