簡易檢索 / 詳目顯示

研究生: 邱朝陽
Chao-Yang Chiu
論文名稱: 分子自組裝單層膜與奈微複合結構表面之液珠操控
Droplet Manipulation across Super-Hydrophobic Surfaces Using Molecules Self-Assembled Monolayer and Micro-Nano Hybrid Structure
指導教授: 陳理定
Li-Ting Chen
楊鏡堂
Jing-Tang Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 120
中文關鍵詞: 奈微複合結構分子自組裝單層膜液珠操控
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在超疏水性表面及微液珠傳輸平台的設計與開發,經由熱力學表面能理論模型之分析計算,奈微機電製程及長鏈分子自組裝技術製作奈微複合結構表面,進而製作連續親疏水梯度表面,達成液珠之自發性傳輸與操控特性。
    首先建立液珠於雙層溝渠型結構表面之理論模型分析,計算液珠之接觸模式及接觸角度,根據本分析方法,可得知雙層結構對於疏水性之增強效果,可作為結構幾何尺寸及分佈情形的設計依據。表面粗糙結構製作方面,利用電子束微影技術製作出線寬及線距皆為500 nm之結構,接觸角度為107° (本質接觸角90.7°),另一方面以化學蝕刻法製作奈米級粗糙結構,實驗顯示本質接觸角91.3°的平坦表面透過雙層奈微複合結構被提昇至150.5°,接觸角度量測值和理論值相符合。亦使用分子氣相沈積儀(MVD)在僅具奈米級粗糙結構表面自組裝FDTS分子,接觸角度從112.4°大幅提昇至165.2°,顯示奈米級粗糙結構對於表面疏水性有很好的增強效果。分子自組裝技術方面,完成DTS及FDTS浸泡時間與表面接觸角度關係,並利用滴定法製作親疏水梯度表面,最長傳輸距離為3.4 mm,最快平均速度為8.31 mm/s,分子自組裝單層膜表面使得液珠傳輸橫跨親、疏水表面兩端。在追求輕薄短小,講求快速的未來當中,本研究在生醫檢測晶片之研發上,提供許多嶄新的思維及方法,希冀本研究之技術及裝置能有效整合於生化檢測領域,使檢測技術能有更重大的突破。


    摘 要 I ABSTRACT II 誌 謝 III 目 錄 IV 圖表目錄 VIII 第一章 前 言 1 第二章 文獻回顧 7 2-1 超疏水性表面 8 2-2 奈/微結構表面超疏水特性 11 2-2.1 接觸角度 11 2-2.2 遲滯效應 12 2-2.3 液珠塌陷與懸浮模式 13 2-3 微液珠操控 15 2-3.1 熱能驅動法 15 2-3.2 化學驅動法 17 2-3.3 電能驅動法 18 2-3.4 光能驅動法 20 2-3.4 表面結構梯度法 20 2-4 分子自組裝單層膜 22 2-4.1 自組裝單層膜基本概念 22 2-4.2 常見之分子自組裝單層膜 25 2-4.3 自組裝單層膜親疏水性及應用 26 第三章 研究方法 31 3-1 理論分析 32 3-1.1 液珠表面接觸角度 33 3-1.2 液珠穩態表面自由能 35 3-1.3 液珠遲滯效應 38 3-2 奈微複合結構表面 40 3-2.1 奈微結構尺寸設計 40 3-2.2 奈微結構製作 43 3-3 分子自組裝單層膜表面 45 3-3.1 自組裝分子選擇 45 3-3.2 分子自組裝單層膜表面製作 50 3-4 液珠實驗量測 55 3-4.1 接觸角度量測 56 3-4.2 前進與後退接觸角量測 57 3-4.3 液珠傳輸拍攝 58 3-5 實驗設備 58 3-5.1 電子束曝光機 58 3-5.2 電子式掃描顯微鏡 59 3-5.3 原子力顯微鏡 59 3-5.4 接觸角度量測儀 60 3-5.5 接觸角度分析軟體 60 3-5.6 高速攝影機 61 第四章 結果與討論 62 4-1 液珠於雙層結構表面理論分析 62 4-1.1 雙層結構理論模型推導 62 4-1.2 液珠於第一層結構表面接觸行為分析 65 4-1.3 液珠於雙層結構表面接觸行為分析 67 4-2 奈微雙層複合結構表面 74 4-2.1 表面形貌觀察 74 4-2.2 接觸角度量測 75 4-3 分子自組裝單層膜表面 79 4-3.1 DTS自組裝單層膜表面 80 4-3.2 FDTS自組裝單層膜表面 91 4-3.3 親疏水性梯度自組裝單層膜表面 99 第五章 結論與未來展望 105 5-1 結論 105 5-2 未來展望 108 5-3 本文貢獻 109 第六章 參考文獻 111

    Bachmanna, J., Elliesb, A., and Hartgea, K. H., 2000, “Development and Application of a New Sessile Drop Contact Angle Method to Assess Soil Water Repellency,” Journal of Hydrology, Vol. 231–232, pp. 66–75.
    Barthlott, W. and Neinhuis, C., 1997, “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces,” Planta, Vol. 202, pp. 1-8.
    Bico, J., Marzolin, C., and Quere, D., 1999, “Pearl Drops,” Europhysics Letters, Vol. 47, pp. 220-226.
    Cassie, A. B. D. and Baxter, S., 1944, “Wettability of Porous Surfaces,” Transactions of the Faraday Society, Vol. 40, pp. 546-551.
    Cho, S. K., Moon, H., and Kim, C. J., 2003, “Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits,” Journal of Microelectromechanical Systems, Vol. 12, pp. 70-80.
    Daniel, S., Chaudhury, M. K., and Chen, J. C., 2001, “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface,” Science, Vol. 291, pp. 633-636.
    Darhuber, A. A. and Valentino, J. P., 2003, “Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays,” Journal of Microelectromechanical Systems, Vol. 12, pp. 873-879.
    Extrand, C. W., 2004, “Contact Angles and Their Hysteresis as a Measure of Liquid-Solid Adhesion,” Langmuir, Vol. 20, pp. 4017-4021.
    Extrand, C. W., 2002, “Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces,” Langmuir, Vol. 18, pp. 7991-7999.
    Fadeev, A. Y. and McCarthy, T. J., 2000, “Self-assembly is not the Only Reaction Possible between Alkyltrichlorosilanes and Surfaces: Monomolecular and Oligomeric Covalently Attached Layers of Dichloro- and Trichloroalkylsilanes on Silicon,” Langmuir, Vol. 16, pp. 7268-7274.
    Fang, X., Li, B., Petersen, E., Seo, Y. S., Samuilov, V. A., Chen, Y., Sokolov, J. C., Shew, C. Y., and Rafailovich, M. H., 2006, “Drying of DNA Droplets,” Langmuir, Vol. 22, pp. 6308-6312.
    Faucheux, N., Schweiss, R., Lutzow, K., Werner, C. and Groth, T., 2004, “Self-assembled Monolayers with Different Terminating Groups as Model Substrates for Cell Adhesion Studies,” Biomaterials, Vol. 25, pp. 2721-2730.
    Feng, X., Feng, L., Jin, M., Zhai, J., Jiang, L., and Zhu, D., 2004, “Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films,” Journal of the American Chemical Society, Vol. 126, pp. 62-63.
    Furstner, R., Barthlott, W., Neinhuis, C., and Walzel, P., 2005, “Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces,” Langmuir, Vol. 21, pp. 956-961.
    He, B. and Lee, J., 2003, “Dynamic Wettability Switching by Surface Roughness Effect,” 16th IEEE International Micro Electro Mechanical Systems Conference, Kyoto, Japan, Jan., pp. 120-123.

    He, B., Patankar, N. A., and Lee, J., 2003, “Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces,” Langmuir, Vol. 19, pp. 4999-5003.
    Herminghaus, S., 2000, “Roughness-induced Non-wetting,” Europhysics Letters, Vol. 52, pp. 165-170.
    Ichimura, K., Oh, S. K., and Nakagawa M., 2000, “Light-Driven Motion of Liquids on a Photoresponsive Surface,” Science, Vol. 288, pp. 1624-1626.
    Ito, Y., Heydari, M., Hashimoto, A., Konno, T., Hirasawa, A., Hori, S., Kurita, K., and Nakajima, A., 2007, “The Movement of a Water Droplet on a Gradient Surface Prepared by Photodegradation,” Langmuir, Vol. 23, 1845-1850.
    Jassen, D., Palma, R. D., Verlaak, S., Heremans, P. and Dehaen, W., 2006, “Static Solvent Contact Angle Measurements, Surface Free Energy and Wettibility Determination of Various Self-assembled Monolayers on Silicon Dioxide,” Thin Solid Films, Vol. 515, pp. 1433-1438.
    Johnson, R. E. and Dettre, R. H., 1963, “Contact Angle Hysteresis: Contact Angle Measurements on Rough Surfaces,” Advances in Chemistry Series, Vol. 43, pp. 112-144.
    Jopp, J., Grull, H., and Yerushalmi-Rozen, R., 2004, “Wetting Behavior of Water Droplets on Hydrophobic Microtextures of Comparable Size,” Langmuir, Vol. 20, pp. 10015-10019.

    Kim, J. and Kim, C. J., 2002, “Nanostructured Surfaces for Dramatic Reduction of Flow Resistance in Droplet-Based Microfluidics,” the 15th IEEE International Micro Electro Mechanical Systems Conference, Las Vegas, Nevada, USA, Jan., pp. 479-482.
    Kmieling, T., Lang, W. and Benecke, W., 2006, “Gas Phase Hydrophobisation of MEMS Silicon Structures with Self-assembling Monolayers for Avoiding in-use Sticking,” Sensors and Actuators A, Vol. 126, pp. 13-17.
    Lahann, J., Mitragotri, S., Tran, T. N., Kaido, H., Sunderum, J., Choi, I. S., Hoffer, S., Somorjai, G. A., and Langer, R., 2003, “A Reversibly Switching Surface,” Science, Vol. 299, pp. 371-374.
    Lee, J., Moon, H., Fowler, J., Schoellhammer, T., and Kim, C-J., 2002, “Electrowetting and Electrowetting-on-Dielectric for Microscale Liquid Handling,” Sensors and Actuators A, Vol. 95, pp. 259-268.
    Lee, S. M. and Kwon, T. H., 2007, “Effects of Intrinsic Hydrophobicity on Wettability of Polymer Replicas of A Superhydrophobic Lotus Leaf,” Journal of Micromechanics and Microengineering, Vol. 17, 687-692.
    Lee S. W. and Laibinis P. E., 2000, “Directed Movement of Liquids on Patterned Surfaces Using Noncovalent Molecular Adsorption,” Journal of American Chemical Society, Vol. 122, pp. 5395-5396
    Miller, W. J., and Abbott, N. L., 1997, “Influence of van der Waals Forces from Metallic Substrates on Fluids Supported on Self-assembled Monolayers Formed from Alkanethiols,” Langmuir, Vol. 13, pp. 7106-7114.
    Moore, E., O'Connell, D., and Galvin, P., 2006, “Surface Characterisation of Indium-Tin Oxide Thin Electrode Films for Use as a Conducting Substrate in DNA Sensor Development,” Thin Solid Films, Vol. 515, pp. 2612-2617.
    Oner, D. and McCarthy, T. J., 2000, “Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability,” Langmuir, Vol. 16, pp. 7777-7782.
    Patankar, N. A., 2003, “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces,” Langmuir, Vol. 19, pp. 1249-1253.
    Sellers, H., Ulman, A., Shnidman, Y., and Eilers, J. E., 1993, “Structure and Binding of Alkanethiolates on Gold and Silver Surfaces: Implications for Self-Assembled Monolayers,” Journal of the American Chemical Society, Vol. 115, pp. 9389-9401
    Seo, J., Ertekin, E., Pio, M. S., and Lee, L. P., 2002, “Self-Assembly Templates by Selective Plasma Surface Modification of Micropatterned Photoresist,” the 15th IEEE International Micro Electro Mechanical Systems Conference, Las Vegas, Nevada, USA, Jan., pp. 192-195.
    Shirtcliffe, N. J., Aqil S., Evans C., Newton, M. I., Perry, C. C., and Roach, P., 2004, “The Use of High Aspect Ratio Photoresist (SU-8) for Super-Hydrophobic Pattern Prototyping,” Journal of Micromechanics and Microengineering, Vol. 14, 1384-1389.
    Wang, S., Liu, H., Liu, D., Ma, X., Fang, X., and Jiang, L., 2007, “Enthalpy-Driven Three-State Switching of a Superhydrophilic/Superhydrophobic Surface,” Angew. Chem. Int. ed. Vol.46, pp. 3915-3917.
    Wasserman, S. R., Tao, Y. T., and Whitesides, G. M., 1989, “Structure and Reactivity of Alkylsiloxane Monolayers Formed by Reaction of Alkyltrichlorosilanes on Silicon Substrates,” Langmuir, Vol. 5, pp. 1074-1087.
    Wenzel, R. N., 1936, “Resistance of Solid Surfaces to Wetting by Water,” Industrial and Engineering Chemistry, Vol. 28, pp. 988-994.
    Yang, J. T., Chen, C. Y., Yang, T. H. and Chen, A. C., 2007, “Microfluidics Device for Separation and Transportation,” US Patent, Pub. No.: US 2007/0034270 A1.
    Yang, J. T., Chen, J. H., Huang, K. J., and Yeh, A. J., 2006, “Droplet Manipulation on a Hydrophobic Textured Surface with Roughened Patterns,” Journal of Microelectromechanical Systems, Vol. 15, pp. 697-707.
    Yang, J. T., Yang, Z. H., Chen, C. Y., and Yao, D. J., 2008, “Conversion of Surface Energy and Manipulation of a Single Droplet across Micropatterned Surfaces,” Langmuir (to be published in August 2008).
    Yasuda, T., Suzuki, K., and Shimoyama, I., 2003, “Automatic Transportation of a Droplet on a Wettability Gradient Surface,” the 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, pp. 1129-1132.
    Yoshimitsu, Z., Nakajima, A., Watanabe, T., and Hashimoto, K., 2002, “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets,” Langmuir, Vol. 18, pp. 5818-5822.

    Yu, X., Wang, Z., Jiang, Y., and Zhang, X., 2006, “Surface Gradient Material: from Superhydrophobicity to Superhydrophilicity,” Langmuir, Vol. 22, pp. 4483-4486.
    Zhang, Y., Bao, C., Wang, G., Song, Y., Jiang, L., Song, Y., Wang, K., and Zhu, D., 2006, “The Interaction of a Novel Ruthenium (II) Complex with Self-Assembled DNA Film on Silicon Surface,” Surface and Interface Analysis, Vol. 38, pp. 1372–1376.
    袁世駿,2004, “結合電潤濕微液滴操作平台之磁珠生化檢測系統研究,” 國立清華大學動力機械工程學系碩士論文
    陳佳惠,2004, “斥水性奈微結構表面之液珠驅動與操控,” 國立清華大學動力機械工程學系碩士論文。
    楊宗翰,2007, “微液珠操控與生化奈微表面之傳輸元件研發,”國立清華大學動力機械工程學系博士論文計畫書。
    楊鏡堂,謝達斌,邱朝陽,楊宗翰,張佑民,陳逸臨,2007,“生物自組裝操控液珠及檢測之方法及裝置,” 申請中華民國及美國發明專利(No. 096114775, 96/04/26).
    楊鏡堂,謝達斌,楊宗翰,方偉峰,陳逸臨,張佑民,2007,“一種新穎電磁場調控表面親疏水性之方法及裝置,”申請中華民國及美國發明專利(No. 096114772, 96/04/26).

    謝達斌,楊鏡堂,蕭宇宏,楊宗翰,2007,“奈米粒子及長鏈分子自組裝製作可控親疏水性介面之方法,”申請中華民國及美國發明專利(No. 096114774, 96/04/26).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE