研究生: |
熊欣怡 Hsin-Yi Hsiung |
---|---|
論文名稱: |
特徵尺寸與製程條件對奈米級金屬直接壓印成形性之影響 Effects of Pattern Size and Process Parameters on the Formability of Metallic Direct Nanoimprint Technology |
指導教授: |
宋震國
Cheng-Kio Sung |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 101 |
中文關鍵詞: | 金屬直接奈米壓印 、模具損耗 、模具尺寸 、製程參數 、圖案成型 、分子動力學模擬 |
外文關鍵詞: | Direct metallic nanoimprint, Mold abrasion, Geometrical parameters, Process parameters, Pattern formation, Molecular dynamics simulation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之目標在於研究奈米級金屬直接壓印之成形技術,期望使金屬材料在較高分子材料難成形之情況下,仍有較佳的轉印效果。壓印技術中影響成形性的因素很多,本研究主要考慮薄膜特性、模具尺寸以及製程參數等對奈米結構成形性之影響。首先,藉由分子動力學模擬以了解金屬直接壓印之成形機制,並與金屬塑性加工理論相互比較;同時探討上述幾何尺寸與製程條件之變化對成形性的影響。
實驗中利用電子束直寫奈米級結構於矽晶圓上而製成模具;同時採用直流與離子束溅镀法製作金屬薄膜;再以直接壓印的方式轉印圖形於金屬薄膜上。在模具之尺寸效應方面,本文以兩個無因次化的參數來進行分析:模穴寬度與節距比及深寬比;製程參數則包含溫度及保壓時間對壓印成型結果之影響;薄膜特性則包含不同材料之金屬薄膜及薄膜厚度,並觀察薄膜特性與模具尺寸及製程參數間之交互影響。
成形結果之評估方面,本文是以壓印完成之圖形高度、上寬度、下寬度分別與模具對應位置之尺寸比例,稱之為填充率,作為壓印結果之品質指標,分別比較不同模穴寬度與節距比及深寬比對金屬直接壓印之影響。其後,再分別以不同的壓印溫度及保壓時間等製程參數,觀察對不同模具尺寸之壓印結果,以期獲得最佳之成形品質。最後,將模具轉印奈米結構於金及鋁薄膜之上,觀察模具壓印後之損壞情形以及壓印完成圖形的表面形貌。
This dissertation presents mainly an experimental investigation into the effects of the metallic thin films properties, mold geometries, and process parameters on the formation of nano patterns on metallic thin films by using direct nanoimprint technique. By the application of molecular dynamics simulation, a theoretical study was performed first for the purpose of understanding the formation mechanism of the proposed direct nanoimprint. In the experiment, the silicon mold with nano-scale patterns was fabricated by the direct writing of electron beam lithography and the metallic thin films were prepared by using DC sputtering as well as ion-beam sputtering. For the purpose of studying the effects of the feature size on the formation of nanostructure the mold geometry, herein, was characterized by two non-dimensional parameters: mold-cavity- width-to-pitch (WP) ratio and aspect ratio. The process parameters considered in this study, which could influence the formability and sustainability of the formed pattern, consisted of temperature and pressure holding time. In addition, the characteristics of the thin films discussed herein covered the types of metallic materials and their thicknesses.
After the imprint experiment, the pattern transferred results under various geometry and process parameters were observed. Meanwhile, the reciprocal effects existing among the WP ratio, aspect ratio, and the thickness of metallic thin film were also examined. The quality of the formed pattern was evaluated by employing the index of pattern- formation ratio that was defined by the height and width of the formed pattern divided by the corresponding geometries of the mold. Besides, the surface profile of the transferred pattern was also an important index of quality observed herein. Finally, the mold abrasion that could reduce the life of the mold due to wear was examined carefully.
[1]Xia, Y. and Whitesides, G. M., “Soft Lithography,” Angew. Chem. Int. Ed., 37, pp. 550-575, 1998.
[2]Chou, S. Y., Krauss, P. R., and Renstrom, P. J., “Nanoimprint lithography,” J. Vac. Sci. Technol. B, Vol. 14, No. 6, pp. 4129-4133, 1996.
[3]Chou, S. Y., Krauss, P. R., Zhang, W., Guo, L., and Zhuang, L., “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B, Vol. 15, No. 6, pp. 2897-2904, 1997.
[4]Tan, H., Gilbertson, A., and Chou, S. Y., “Roller Nanoimprint Lithography,” J. Vac. Sci. Technol. B, Vol. 16, No. 6, pp. 3926-3928, 1998.
[5]Chou, S. Y., Keimel, C., and Gu, J., “Ultrafast and direct imprint of nanostructures in silicon,” Nature, Vol. 417, pp. 835-837, 2002.
[6]Xia, Q., Keimel, C., Ge, H., Yu, Z., Wu, W., and Chou, S. Y., “Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography,” Appl. Phys. Lett., Vol. 83, No. 21, pp. 4417-4419, 2003.
[7]Colburn, M., Johnson, S. C., Stewart, M., Damle, S., Jin, B. J., Bailey, T. C., Wedlake, M., Michaslson, T., Sreenivasan, S. V., Ekerdt, J. G., and Willson, C. G., “Step and Flash Imprint Lithography: An Alternative Approach to High Resolution Patterning,” Proc. SPIE, Vol. 3676, pp. 379-389, 1999
[8]Ahn, S. W., Lee, K. D.,Kim, J. S., Kim, S. H., Lee, S. H., Park, J. D., and Yoon, P. W., “Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching,” Microelectronic Engineering, Vol. 78-79, pp. 314-318, 2005.
[9]Ahn, S. W., Lee, K. D.,Kim, J. S., Kim, S. H., Park, J. D., Lee, S. H., and Yoon, P. W., “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology, Vol. 16, pp. 1874-1877, 2005.
[10]Tao, J., Chen, Y., Zhao, X., Malik, A., Cui, Z., “Room temperature nanoimprint lithography using a bilayer of HSQ/PMMA resist stack,” Microelectronic Engineering, Vol. 78-79, pp. 665-669, 2005.
[11]Chen, H. L., Chuang, S. Y., Cheng, H. C., Lin, C. H., Chu, T. C., “Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure,” Microelectronic Engineering, Vol. 83, pp. 893-896, 2006.
[12]Pang, S. W., Tamamura, T., Nakao, M., Ozawa, A., and Masuda, H., “Direct nano-printing on Al substrate using a SiC mold,” Journal of Vacuum Science and Technology B, Vol. 16, No. 3, pp.1145-1149, 1998.
[13]Alder, B. J. and Wainwright, T. E., “Studies in Molecular Dynamics. I. General Method,” Journal of Chemical Physics, Vol. 31, No. 2, pp. 459-466, 1959.
[14]Alder, B. J. and Wainwright, T. E., “Studies in Molecular Dynamics. II. Behavior of a Small Number of Elastic Spheres,” Journal of Chemical Physics, Vol. 33, No. 5, pp. 1439-1451, 1960.
[15]Verlet, L., “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Physical Review, Vol. 159, No.1, pp. 98-103, 1967.
[16]Buldum, A. and Ciraci, S., “Contact, nanoindentation, and sliding friction,” Physical Review B, Vol. 57, No. 4, pp.2468-2476, 1998.
[17]Christopher, D., Smith, R., and Richter, A., “Atomistic modelling of nanoindentation in iron and silver,” Nanotechnology, Vol. 12, pp. 372-383, 2001.
[18]Fang, T. H., Jian, S. R., and Chuu, D. S., “Molecular Dynamics Analysis of Effects of Velocity and Loading on the Nanoindentation,” Japanese Journal of Applied Physics, Vol. 41, pp. L1328-1331, 2002.
[19]Fang, T. H., Weng, C. I., and Chang, J. G., “Molecular dynamics analysis of temperature effects on nanoindentation measurement,” Materials Science and Engineering A, Vol. 357, pp.7-12, 2003.
[20]Yu, H., Adams, J. B., and Hector Jr, L. G., “Molecular dynamics s imulation of high-speed nanoindentation,” Modelling Simul. Mater Sci. Eng., Vol. 10, pp. 319-329, 2002.
[21]Hsu, Q. C., Wu, C. D., and Fang, T. H., “Deformation Mechanism and Punch Taper Effects on Nanoimprint Process by Molecular Dynamics,” Japanese Journal of Applied Physics, Vol. 43, pp. 7665-7669, 2004.
[22]Hsu, Q. C., Wu, C. D., and Fang, T. H., “Studies on nanoimprint process parameters of copper by molecular dynamics analysis,” Computeational Materials Science, Vol. 34, No. 4, pp. 314-322, 2005.
[23]Kalpakjian, S., Manufacturing processes for engineering materials, 3rd ed., Addison Wesley Longman, Inc., 1997.
[24]Cahn, R. W., Haasen, P., and Kramer, E. J., Materials Science and Technology – A comprehensive Treatment, Vol. 6 Plastic deformation and fracture of materials, VHC, Weinheim, 1993.
[25]Callister, Jr., W. D., Materials Science and Engineering – An Introduction, John Wiley & Sons, Inc., 2003.
[26]Schiotz, J. and Jacobsen, K. W., “A Maximum in the Strength of Nanocrystalline Copper,” Science, Vol. 301, pp. 1357-1359, 2003.
[27]Conrad, H. andNarayan, J., “Mechanism for grain size softening in nanocrystalline Zn,” Applied Physics Letters, Vol. 81, No. 12, pp.2241-2243, 2002.
[28]Girifalco, L. A. and Weizer, V. G., “Application of the Morse Potential Function to Cubic Metals,” Physical Review, Vol. 114, No. 3, pp. 687-690, 1959.
[29]Haile, J. M., Molecular Dynamics Simulation – Elementary Methods, John Wiley & Sons, New York, 1997.
[30]Madou, M. J., Fundamentals of Microfabrication, CRC Press LLC, 1997.
[31]Vossen, J. L. and Kern, W., Thin Film Processes II, Academic Press, Inc., 1991.
[32]Schuegraf, K. K., Handbook of Thin-film Deposition Processes and Techniques, Noyes Publications, New Jersey, 1988.
[33]http://ustcnst.nthu.edu.tw/nodust_equip.php?act=DCSputterSystem
[34]Flegler, S. L., Heckman Jr., J. W., Klomparens, K. L., Scanning and Transmission Electron Microscopy: An Introduction, Oxford University Press. 1995.
[35]MSSCORPS CO., LTD
http://www.msscorps.com/
[36]http://en.wikipedia.org/wiki/Atomic_force_microscope
[37]Industrial Technology Research Institute
[38]Chen, S., Liu, L., Wang, T., “Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating-substrate combinations,” Surface and Coatings Technology, Vol. 191, pp. 25-32, 2005.
[39]Hirai, Y., Fujiwara, M., Okuno, T., Tanaka, Y., Endo, M., Irie, S., Nakagawa, K., and Sasago, M., “Study of the resist deformation in nanoimprint lithography,” J. Vac. Sci. Technology B, Vol. 19, No. 6, pp. 2811-2815, 2001.
[40]Hirai, Y., Konishi, T., Yoshikawa, T., and Yoshida, S., “Simulation and experimental study of polymer deformation in nanoimprint lithography,” J. Vac. Sci. Technology B, Vol. 22, No. 6, pp. 3288-3293, 2004.
[41]Rowland, H. D., Sun, A. C., Schunk, P. R., and King, W. P., “Impact of polymer film thickness and cavity size on polymer flow during embossing: toward process design rules for nanoimprint lithography,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 2414-2425, 2005.
[42]Clark, D. S., and Varney, W. R., Physical Metallurgy for Engineers, 2nd ed., 1962.