研究生: |
張友儒 Chang, Yu-Ju |
---|---|
論文名稱: |
Investigation of Mechanical Tension on Neurite Outgrowth and Axon Elongation with Micropatterned Stretching System 以微拉伸系統探討應力刺激及微圖案對神經突觸生長之研究 |
指導教授: |
蔡哲正
王子威 |
口試委員: |
蔡哲正
王子威 孫瑞昇 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 90 |
中文關鍵詞: | 應力刺激 、黃光微影 、微流道 、突觸生長 、軸突延長 |
外文關鍵詞: | Mechanical tension, Photolithography, Microfluidic, Neurite extension, Axon elongation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Mechanical tension is regarded as a crucial factor to trigger neurite outgrowth and axon elongation in many neurological researches. In this study, we developed a feasible and reliable stretching platform combined with photolithography and microfluidic techniques to investigate the effect of tensile force on cell mechanics of neurons. The PDMS based substrate with specific micropattern is designed as stretching membrane where neural stem cells (NSCs) are seeded on and experienced with tensile force. This allows us to investigate the mechanoresponses of neuron and verify the effects of tension on neurite extension at a single-cell level. Different stretching mode (viz., continuous or intermittent) and culture conditions (viz., pattern or non-pattern) are conducted to examine the distinct effects of tension on neurite extension during cell incubation. For cells undergoing mechanical tension, neurite extension and axon elongation were significantly enhanced about 30% and neurite orientation was heading more toward the path of tension as cells experienced stretching with parameter 1 mm/day after 7 days culture. We can also find that mechanical tension apparently influence NSCs differentiation toward neuronal cells at Day 7 from the analysis of neuronal protein marker, β Ⅲ tubulin. However, the neuronal maturity didn’t show significant difference for neurites either on parallel or vertical channels. This may be further investigated by long-term culture to distinguish the directional effect of mechanical tension on promoting NSCs maturation processes.
在過去許多探討神經細胞的力學研究當中,應力刺激對神經突觸的生長,扮演著相當重要的角色。本篇研究裡,我們發展出一套實效且穩定的拉伸平台,並結合黃光微影的微流道技術,探討神經細胞的力學現象。我們主要是利用具有彈性的PDMS為拉伸的基材,經由黃光微影製程,在其上製作特定尺寸的微流道,經由拉伸PDMS基材,使培養在基材上的神經幹細胞可以感受到拉伸應力的刺激。這樣的設計,便於我們探討神經細胞的力學反應,並可觀察接近單一細胞尺寸之神經軸突的生長。經由不同的培養條件及拉伸參數測試,當神經幹細胞受到拉伸而感受到應力刺激時,神經突觸的生長,及軸突的延長有顯著增加的效果,以預先讓細胞貼附12小時,再進行拉伸實驗測試而言,拉伸參數為1 mm/day的組別在7天的培養之後,總突觸長度可達240 μm,比沒有拉伸的組別增加約30%,突觸相位角為較趨於水平方向的28°。此外,我們亦利用免疫螢光染色,觀察細胞在受到機械應力刺激後的分化成熟情況,從標定神經細胞的螢光蛋白β Ⅲ tubulin之表現量得知,當神經幹細胞受到拉伸應力刺激時,大約於培養7天後,比未受應力刺激的神經幹細胞,有明顯朝向神經細胞分化成熟的趨勢。而神經幹細胞在水平方向,和垂直微流道方向上的成熟差異性,以目前的實驗天數未觀察到有顯著的差別,需再經由長時間的培養觀察,才得以看出應力刺激,對水平和垂直於拉伸方向的神經突觸,其生長和分化成熟度的影響。
1. Davies PF. Flow-mediated endothelial mechanotransduciton. Physiological Reviews 1995 Jul;75(3):519-560.
2. Huxley AF, Simmons RM. Proposed mechanism of force generation in striated muscle. Nature 1971;233(5321):533-&.
3. Wirtz HRW, Dobbs LG. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial-cells. Science 1990 Nov;250(4985):1266-1269.
4. Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology 2006 Apr;7(4):265-275.
5. Pelham RJ, Wang YL. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences of the United States of America 1997 Dec;94(25):13661-13665.
6. Hasegawa S, Sato S, Saito S, Suzuki Y, Brunette DM. Mechanical stretching increases the number of cultured bone-cells synthesizing DNA and alters their pattern of protein-synthesis. Calcif Tissue Int 1985;37(4):431-436.
7. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006 Aug;126(4):677-689.
8. Cheng W, Li BS, Kajstura J, Li P, Wolin MS, Sonnenblick EH, et al. Stretch-induced programmed myocyte cell-death. J Clin Invest 1995 Nov;96(5):2247-2259.
9. Bao G, Suresh S. Cell and molecular mechanics of biological materials. Nat Mater 2003 Nov;2(11):715-725.
10. Bray D. Mechanical tension produced by nerve-cells in tissue-culture. J Cell Sci 1979;37(JUN):391-410.
11. Dennerll TJ, Lamoureux P, Buxbaum RE, Heidemann SR. The cytomechanics of axonal elongation and retraction. J Cell Biol 1989 Dec;109(6):3073-3083.
12. VanEssen DC. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 1997 Jan;385(6614):313-318.
13. Harrison RG. The Croonian Lecture - On the origin and development of the nervous system studied by the methods of experimental embryology. Proc R Soc Lond Ser B-Biol Sci 1935 Aug;118(808):155-196.
14. AK O. Mechanical properties of tissues of the nervous system. J Biomech 1968 Jul;1(2):127-138.
15. Fallenst.Gt, Hulce VD, Melvin JW. Dynamic mechanical properties of human brain tissue. J Biomech 1969;2(3):217-&.
16. Shuck LZ, Haynes RR, Fogle JL. Determination of viscoelastic properties of human brain tissue. Mechanical Engineering 1970 1970;92(11):57-&.
17. Bray D. Axonal growth in response to experimentally applied mechanical tension. Dev Biol 1984;102(2):379-389.
18. Lamoureux P, Buxbaum RE, Heidemann SR. Direct evidence that growth cones pull. Nature 1989 Jul;340(6229):156-162.
19. Zheng J, Lamoureux P, Santiago V, Dennerll T, Buxbaum RE, Heidemann SR. Tensile regulation of axonal elongation and initiation. J Neurosci 1991 Apr;11(4):1117-1125.
20. Siechen S, Yang SY, Chiba A, Saif T. Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proceedings of the National Academy of Sciences of the United States of America 2009 Aug;106(31):12611-12616.
21. Smith DH, Wolf JA, Meaney DF. A new strategy to produce sustained growth of central nervous system axons: Continuous mechanical tension. Tissue Eng 2001 Apr;7(2):131-139.
22. Li JM, Shi RY. Fabrication of patterned multi-walled poly-L-lactic acid conduits for nerve regeneration. J Neurosci Methods 2007 Sep;165(2):257-264.
23. Pfister BJ, Weihs TP, Betenbaugh M, Bao G. An in vitro uniaxial stretch model for axonal injury. Ann Biomed Eng 2003 May;31(5):589-598.
24. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 1998 Dec;70(23):4974-4984.
25. Gross PG, Kartalov EP, Scherer A, Weiner LP. Applications of microfluidics for neuronal studies. J Neurol Sci 2007 Jan;252(2):135-143.
26. Schultz SK. Principles of neural science, 4th edition. Am J Psychiat 2001 Apr;158(4):662-662.
27. Franze K, Guck J. The biophysics of neuronal growth. Rep Prog Phys 2010 Sep;73(9):19.
28. Lowery LA, Van Vactor D. The trip of the tip: understanding the growth cone machinery. Nature Reviews Molecular Cell Biology 2009 May;10(5):332-343.
29. Goldberg JL. Intrinsic neuronal regulation of axon and dendrite growth. Curr Opin Neurobiol 2004 Oct;14(5):551-557.
30. Palay SL. Cajal on the cerebral-cortex - an annotated translation of the complete writings - defelipe,j, jones,eg. Nature 1989 Oct;341(6242):493-494.
31. Wong ROL, Ghosh A. Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci 2002 Oct;3(10):803-812.
32. Luo LQ, O'Leary DDM. Axon retraction and degeneration in development and disease. Annu Rev Neurosci 2005;28:127-156.
33. Kollins KM, Bell RL, Butts M, Withers GS. Dendrites differ from axons in patterns of microtubule stability and polymerization during development. Neural Dev 2009 Jul;4:16.
34. Dent EW, Gertler FB. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 2003 Oct;40(2):209-227.
35. TessierLavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996 Nov;274(5290):1123-1133.
36. Dickson BJ. Molecular mechanisms of axon guidance. Science 2002 Dec;298(5600):1959-1964.
37. Wen ZX, Zheng JQ. Directional guidance of nerve growth cones. Curr Opin Neurobiol 2006 Feb;16(1):52-58.
38. Pantaloni D, Le Clainche C, Carlier MF. Cell biology - Mechanism of actin-based motility. Science 2001 May 25;292(5521):1502-1506.
39. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003 Feb 21;112(4):453-465.
40. Lin CH, Espreafico EM, Mooseker MS, Forscher P. Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 1996 Apr;16(4):769-782.
41. Medeiros NA, Burnette DT, Forscher P. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 2006 Mar;8(3):215-226.
42. Suter DM, Forscher P. Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. Journal of Neurobiology 2000 Aug;44(2):97-113.
43. Schmidt CE, Dai JW, Lauffenburger DA, Sheetz MP, Horwitz AF. Integrin-cytoskeletal interactions in neuronal growth cones. J Neurosci 1995 May;15(5):3400-3407.
44. Chan CE, Odde DJ. Traction dynamics of filopodia on compliant substrates. Science 2008 Dec 12;322(5908):1687-1691.
45. Chetta J, Kye C, Shah SB. Cytoskeletal Dynamics in Response to Tensile Loading of Mammalian Axons. Cytoskeleton 2010 Oct;67(10):650-665.
46. Bray D. Surface movements during growth of single explanted neurons. Proceedings of the National Academy of Sciences of the United States of America 1970;65(4):905-&.
47. Brown A. Slow axonal transport: stop and go traffic in the axon. Nature Reviews Molecular Cell Biology 2000 Nov;1(2):153-156.
48. Marsh L, Letourneau PC. Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin-B. J Cell Biol 1984;99(6):2041-2047.
49. Lafont F, Rouget M, Rousselet A, Valenza C, Prochiantz A. Specific responses of axons and dendrites to cytoskeleton perturbations - an invitro study. J Cell Sci 1993 Feb;104:433-443.
50. Letourneau PC, Ressler AH. Inhibition of neurite initiation and growth by taxol. J Cell Biol 1984;98(4):1355-1362.
51. Bamburg JR, Bray D, Chapman K. Assembly of microtubules at the tip of growing axons. Nature 1986 Jun;321(6072):788-790.
52. O'Toole M, Lamoureux P, Miller KE. A physical model of axonal elongation: Force, viscosity, and adhesions govern the mode of outgrowth. Biophys J 2008 Apr;94(7):2610-2620.
53. Godement P, Wang LC, Mason CA. Retinal axon divergence in the optic chiasm - dynamics of growth cone behavior at the midline. J Neurosci 1994 Nov;14(11):7024-7039.
54. Dennerll TJ, Joshi HC, Steel VL, Buxbaum RE, Heidemann SR. Tension and compression in the cytoskeleton of PC-12 neurites II - quantitative measurements. J Cell Biol 1988 Aug;107(2):665-674.
55. Trinkaus JP. Further thoughts on directional cell-movement during morphogenesis. J Neurosci Res 1985;13(1-2):1-19.
56. Aletta JM, Greene LA. Growth cone configuration and advance a time-lapse study using video-enhanced differential interference contrast microscopy. J Neurosci 1988 Apr;8(4):1425-1435.
57. Goldberg DJ, Burmeister DW. Stages in axon formation-observations of growth of aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy. J Cell Biol 1986 Nov;103(5):1921-1931.
58. Lasek RJ. Polymer sliding in axons. J Cell Sci 1986:161-179.
59. Shefi O, Harel A, Chklovskii DB, Ben-Jacob E, Ayali A. Biophysical constraints on neuronal branching. Neurocomputing 2004 Jun;58:487-495.
60. Anava S, Greenbaum A, Ben Jacob E, Hanein Y, Ayali A. The regulative role of neurite mechanical tension in network development. Biophys J 2009 Feb;96(4):1661-1670.
61. Fass JN, Odde DJ. Tensile force-dependent neurite elicitation via anti-beta 1 integrin antibody-coated magnetic beads. Biophys J 2003 Jul;85(1):623-636.
62. Fischer TM, Steinmetz PN, Odde DJ. Robust micromechanical neurite elicitation in synapse-competent neurons via magnetic bead force application. Ann Biomed Eng 2005 Sep;33(9):1229-1237.
63. Lamoureux P, Zheng J, Buxbaum RE, Heidemann SR. A cytomechanical investigation of neurite growth on different culture surfaces. J Cell Biol 1992 Aug;118(3):655-661.
64. Lamoureux P, Ruthel G, Buxbaum RE, Heidemann SR. Mechanical tension can specify axonal fate in hippocampal neurons. J Cell Biol 2002 Nov;159(3):499-508.
65. Neidlingerwilke C, Wilke HJ, Claes L. Cyclic stretching of human osteoblasts affects proliferation and metabolism-a new experimental-method and its application. J Orthop Res 1994 Jan;12(1):70-78.
66. Ahmed WW, Kural MH, Saif TA. A novel platform for in situ investigation of cells and tissues under mechanical strain. Acta Biomater 2010 Aug;6(8):2979-2990.
67. Hornberger TA, Armstrong DD, Koh TJ, Burkholder TJ, Esser KA. Intracellular signaling specificity in response to uniaxial vs. multiaxial stretch: implications for mechanotransduction. Am J Physiol-Cell Physiol 2005 Jan;288(1):C185-C194.
68. Houtchens GR, Foster MD, Desai TA, Morgan EF, Wong JY. Combined effects of microtopography and cyclic strain on vascular smooth muscle cell orientation. J Biomech 2008;41(4):762-769.
69. Kurpinski K, Chu J, Hashi C, Li S. Anisotropic mechanosensing by mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America 2006 Oct;103(44):16095-16100.
70. Isenberg BC, DiMilla PA, Walker M, Kim S, Wong JY. Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys J 2009 Sep;97(5):1313-1322.
71. Minteer SD. Microfluidic techniques: Reviews and protocols. 2005 November 15:247.
72. Matsubara Y, Murakami Y, Kobayashi M, Morita Y, Tamiya E. Application of on-chip cell cultures for the detection of allergic response. Biosens Bioelectron 2004 Feb;19(7):741-747.
73. Peterson SL, McDonald A, Gourley PL, Sasaki DY. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: Cell culture and flow studies with glial cells. J Biomed Mater Res Part A 2005 Jan;72A(1):10-18.
74. Thangawng AL, Ruoff RS, Swartz MA, Glucksberg MR. An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization. Biomed Microdevices 2007 Aug;9(4):587-595.
75. Giancotti FG, Ruoslahti E. Transduction - Integrin signaling. Science 1999 Aug;285(5430):1028-1032.
76. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001;17:463-516.
77. Aucoin L, Griffith CM, Pleizier G, Deslandes Y, Sheardown H. Interactions of corneal epithelial cells and surfaces modified with cell adhesion peptide combinations. J Biomater Sci-Polym Ed 2002;13(4):447-462.
78. Pakstis LM, Dunkers JP, Zheng A, Vorburger TV, Quinn TP, Cicerone MT. Evaluation of polydimethylsiloxane modification methods for cell response. J Biomed Mater Res Part A 2010 Feb;92A(2):604-614.
79. LaPlaca MC, Cullen DK, McLoughlin JJ, Cargill RS. High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. J Biomech 2005 May;38(5):1093-1105.
80. Ishihara A, Saito H, Abe K. Transforming growth factor-β1 and -β2 promote neurite sprouting and elongation of cultured rat hippocampal neurons. Brain Res 1994 Mar;639(1):21-25.
81. Haq F, Keith C, Zhang GG. Neurite development in PC12 cells on flexible micro-textured substrates under cyclic stretch. Biotechnol Prog 2006 Jan-Feb;22(1):133-140.
82. Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proceedings of the National Academy of Sciences of the United States of America 1995 Dec;92(25):11879-11883.
83. Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 1997;8(6):389-404.
84. Brock A, Chang E, Ho CC, LeDuc P, Jiang XY, Whitesides GM, et al. Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir 2003 Mar;19(5):1611-1617.