研究生: |
黃盈勳 Huang, Ying-Hsun |
---|---|
論文名稱: |
腔增強自發參量下轉換產生之先驅單光子源 Heralded single photon source via cavity-enhanced spontaneous parametric down conversion |
指導教授: |
李瑞光
Lee, Ray-Kuang |
口試委員: |
陳應誠
Chen, Ying-Cheng 陳彥宏 Chen, Yen-Hung 褚志崧 Chuu, Chih-Sung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 量子 、單光子 、先驅 、共振腔 、自發參量下轉換 、鈮酸鋰 |
外文關鍵詞: | Heralded, Spontaneous Parametric Down Conversion(SPDC) |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
綜觀近5至10年的科技研革,從大數據[1],緊接雲端資源[2],所帶來的資訊安全議題,及這幾年的AI人工智慧[3]等等……,皆顯示傳統的測量及運算方式,已逐漸無法滿足人類的需求,近年來隨著google、IBM等科技巨頭陸續發表的量子產品,亦顯示「量子」科技的發展正如火如荼;然談到光的非古典量子態,最基本的莫過於數態和壓縮態,在現今各個量子應用上,單光子光源也都是項重大議題,故本研究欲利用腔增強自發參量下轉換,非線性晶體為週期性極化鈮酸鋰,及先驅機制來製備單光子光源,以探討其特性並期做更多應用。
Looking at the scientific revolution of these 5 to 10 years. We can find the shortcomings and insufficient of traditional computing from the application of big data, cloud system, and AI (Artificial Intelligence) etc. And with the market share importance from the technology magnates such as google, IBM, also showing us the development of “quantum technology” is in full swing. However, touch upon the non-classical quantum states of light. Nothing is more important than number state and squeezed state. Nowadays in quantum applications, single photon light source is always a big issue. Therefore, this research proposes to produce a heralded single photon source by cavity-enhanced spontaneous parametric down conversion, which nonlinear crystal is PPLN (Periodically Poled LiNbO_3), for using in quantum states understanding and quantum application.
[1] 資訊中心, 3. and 資訊中心, 3., 2020. .2017 年大數據發展的 8 個預測. [online] 3smarket-info.blogspot.com. Available at: <http://3smarket-info.blogspot.com/2016/12/2017-8.html> [Accessed 27 June 2020].
[2] 引爆資料中心革命:雲端運算 - StockFeel 股感StockFeel 股感. 2020. 引爆資料中心革命:雲端運算 - Stockfeel 股感. [online] Available at: <https://www.stockfeel.com.tw/%E5%BC%95%E7%88%86%E8%B3%87%E6%96%99%E4%B8%AD%E5%BF%83%E9%9D%A9%E5%91%BD%EF%BC%9A%E9%9B%B2%E7%AB%AF%E9%81%8B%E7%AE%97/> [Accessed 27 June 2020].
[3] 數位時代. 2020. 資本市場正在追逐的AI大浪|數位時代. [online] Available at: <https://www.bnext.com.tw/article/47643/ai-soaring-stock> [Accessed 27 June 2020].
[4] Ho, N., 2020. 用最簡單的例子告訴你:什麼是量子電腦的運算方式?. [online] TechNews 科技新報. Available at: <https://technews.tw/2018/10/25/what-is-quantum-computer/> [Accessed 1 July 2020]. [5] Www1.cgmh.org.tw. 2020. 單光子電腦斷層掃描. [online] Available at: <https://www1.cgmh.org.tw/intr/intr5/c63f00/123/%E7%B0%A1%E4%BB%8BSPECT.htm> [Accessed 1 July 2020].
[6] 王真, 2020. 網易郵報. [online] 科普:什麼是量子通訊?量子衛星有啥價值?. Available at: <https://kknews.cc/zh-tw/science/vkxova.html> [Accessed 1 July 2020].
[7] 數位時代. 2020. 驅動AI、醫療、通訊新變革,量子電腦將顛覆世界|數位時代. [online] Available at: <https://www.bnext.com.tw/article/49062/serious-quantum-computers-are-finally-here.-what-are-we-going-to-do-with-them> [Accessed 27 June 2020].
[8] 2014. Spontaneous Parametric Down-Conversion And Quantum Entanglement. Bachelor of Science. Portland State University.
[9] Rambach, M. (2017). Narrowband Single Photons for Light-Matter Interfaces. Doctor. The University of Queensland.
[10] C. Couteau, “Spontaneous parametric down-conversion,” Contemporary Physics, vol. 59, no. 3, pp. 291–304, 2018.
[11] Fiorentino, M., Spillane, S., Beausoleil, R., Roberts, T., Battle, P. and Munro, M. (2007). Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals. Optics Express, 15(12), p.7479.
[12] Gayer, O., Sacks, Z., Galun, E. and Arie, A., 2008. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Applied Physics B, 94(2), pp.367-367.
[13] Emanueli, S. and Arie, A. (2003). Temperature-Dependent Dispersion Equations for KTiOPO4 and KTiOAsO4. Applied Optics, 42(33), p.6661.
[14] Walls, D. and Milburn, G. (2011). Quantum optics. Berlin: Springer.
[15] Blauensteiner, B., Herbauts, I., Bettelli, S., Poppe, A. and Hübel, H. (2009). Photon bunching in parametric down-conversion with continuous-wave excitation. Physical Review A, 79(6).
[16] Zhang, Y., Kasai, K. and Watanabe, M. (2002). Investigation of the photon-number statistics of twin beams by direct detection. Optics Letters, 27(14), p.1244.
[17] Canonical Transformations in Quantum Field Theory. Lecture notes by M. Blasone.
[18] Shapiro, J. and Sun, K. (1994). Semiclassical versus quantum behavior in fourth-order interference. Journal of the Optical Society of America B, 11(6), p.1130.
[19] Razavi, M., Söllner, I., Bocquillon, E., Couteau, C., Laflamme, R. and Weihs, G. (2009). Characterizing heralded single-photon sources with imperfect measurement devices. Journal of Physics B: Atomic, Molecular and Optical Physics, 42(11), p.114013.
[20] Fadhali, M., 2012. Advanced Photonic Sciences. Rijeka, Croatia: InTech.
[21] Wee, T., Tzeng, Y., Han, C., Chang, H., Fann, W., Hsu, J., Chen, K. and Yu, Y. (2007). Two-photon Excited Fluorescence of Nitrogen-Vacancy Centers in Proton-Irradiated Type Ib Diamond†. The Journal of Physical Chemistry A, 111(38), pp.9379-9386.
[22] Sipahigil, A., Jahnke, K., Rogers, L., Teraji, T., Isoya, J., Zibrov, A., Jelezko, F. and Lukin, M. (2014). Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond. Physical Review Letters, 113(11).
[23] Hanschke, L., Fischer, K., Appel, S., Lukin, D., Wierzbowski, J., Sun, S., Trivedi, R., Vučković, J., Finley, J. and Müller, K. (2018). Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Information, 4(1).
[24] Senellart, P., Solomon, G. and White, A. (2017). High-performance semiconductor quantum-dot single-photon sources. Nature Nanotechnology, 12(11), pp.1026-1039.
[25] Rri.res.in. 2020. Quic Lab. [online] Available at: <http://www.rri.res.in/quic/resources/opn2019/> [Accessed 20 March 2020].
[26] Rambach, M., Nikolova, A., Weinhold, T. and White, A. (2016). Sub-megahertz linewidth single photon source. APL Photonics, 1(9), p.096101.
[27] Lyons, A., Knee, G., Bolduc, E., Roger, T., Leach, J., Gauger, E. and Faccio, D., 2018. Attosecond-resolution Hong-Ou-Mandel interferometry. Science Advances, 4(5), p.eaap9416.
[28] Ou, Z. and Lu, Y. (1999). Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons. Physical Review Letters, 83(13), pp.2556-2559.
[29] Zhang, H., Jin, X., Yang, J., Dai, H., Yang, S., Zhao, T., Rui, J., He, Y., Jiang, X., Yang, F., Pan, G., Yuan, Z., Deng, Y., Chen, Z., Bao, X., Chen, S., Zhao, B. and Pan, J. (2011). Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nature Photonics, 5(10), pp.628-632.
[30] Slattery, O., Ma, L., Zong, K. and Tang, X. (2019). Background and Review of Cavity-Enhanced Spontaneous Parametric Down-Conversion. Journal of Research of the National Institute of Standards and Technology, 124.
[31] Scholz, M., Koch, L. and Benson, O., 2009. Analytical treatment of spectral properties and signal–idler intensity correlations for a double-resonant optical parametric oscillator far below threshold. Optics Communications, 282(17), pp.3518-3523.
[32] Bettelli, S., 2010. Comment on “Coherence measures for heralded single-photon sources”. Physical Review A, 81(3).
[33] Dur.ac.uk. 2020. Department Of Physics : Poisson Distribution - Durham University. [online] Available at: <https://www.dur.ac.uk/physics/students/labs/skills/data/poisson/> [Accessed 2 June 2020].
[34] Refractiveindex.info. 2020. Refractive Index Of Linbo3 (Lithium Niobate) - Zelmon-E. [online] Available at: <https://refractiveindex.info/?shelf=main&book=LiNbO3&page=Zelmon-e> [Accessed 2 July 2020].
[35] Scholz, M., Koch, L. and Benson, O., 2009. Statistics of Narrow-Band Single Photons for Quantum Memories Generated by Ultrabright Cavity-Enhanced Parametric Down-Conversion. Physical Review Letters, 102(6).
[36] Scholz, M., Koch, L., Ullmann, R. and Benson, O., 2009. Single-mode operation of a high-brightness narrow-band single-photon source. Applied Physics Letters, 94(20), p.201105.
[37] Scholz, M., Koch, L. and Benson, O., 2009. Analytical treatment of spectral properties and signal–idler intensity correlations for a double-resonant optical parametric oscillator far below threshold. Optics Communications, 282(17), pp.3518-3523.
[38] Fekete, J., Rieländer, D., Cristiani, M. and de Riedmatten, H., 2013. Ultranarrow-Band Photon-Pair Source Compatible with Solid State Quantum Memories and Telecommunication Networks. Physical Review Letters, 110(22).
[39] Zhou, Z., Ding, D., Li, Y., Wang, F. and Shi, B., 2013. Cavity-enhanced bright photon pairs at telecom wavelengths with a triple-resonance configuration. Journal of the Optical Society of America B, 31(1), p.128.
[40] Ahlrichs, A. and Benson, O., 2016. Bright source of indistinguishable photons based on cavity-enhanced parametric down-conversion utilizing the cluster effect. Applied Physics Letters, 108(2), p.021111.
[41] Luo, K., Herrmann, H., Krapick, S., Brecht, B., Ricken, R., Quiring, V., Suche, H., Sohler, W. and Silberhorn, C., 2015. Direct generation of genuine single-longitudinal-mode narrowband photon pairs. New Journal of Physics, 17(7), p.073039.
[42] Tian, L., Li, S., Yuan, H. and Wang, H., 2016. Generation of Narrow-Band Polarization-Entangled Photon Pairs at a Rubidium D1 Line. Journal of the Physical Society of Japan, 85(12), p.124403.
[43] Black, E., 2001. An introduction to Pound–Drever–Hall laser frequency stabilization. American Journal of Physics, 69(1), pp.79-87.