研究生: |
李易潔 Li, Yi Chieh |
---|---|
論文名稱: |
無模型隱含波動度與破產機率之訊息內涵 Information content of the model-free volatility expectation with bankruptcy chance |
指導教授: |
曾祺峰
Tzeng, Chi-Feng 朱家杰 Chu, Chia-Chieh |
口試委員: |
蔡子晧
Tzu-Hao Tsai |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 38 |
中文關鍵詞: | 無模型隱含波動度,實際波動度,隱含波動度 |
外文關鍵詞: | Model-free Implied Volatility, Realized Volatility, Implied Volatility |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一、研究動機
股票選擇權價格包含了預測股價的波動度的訊息,所以我想研究利用美國銀行 ( Bank of America , BAC ) 的市場股票選擇權價格去檢視是否市場上股價的未來實際波動度( Future Realized Volatility , FRV ) 可以被混合對數常態分配 ( MLN ) 和混合對數常態分配加入破產機率( MLNbk )的無模型隱含波動度Model-free implied volatility ( MFIV ) 解釋,並比較以上兩種模型的解釋力之好壞,本研究檢視是否加入破產機率之模型是比未考慮破產機率的模型具有較多的解釋力,以上兩種模型算出的波動度都是在 Q-measure 下的波動度,我們額外把實際波動度也考慮進來去解釋未來實際波動度,實際波動度是在 P-measure 下的波動度,將以上三者當作解釋變數去解釋未來實際波動度(被解釋變數)。
二、研究方法
依市場資料作分析去推算理論選擇權價格還有市場無風險利率和股利率。
以最小平均誤差平方法及市場資料估計破產機率模型,和混合對數常態的分配模型,去估計各個模型參數。
模型參數記錄下來代入 MFIV 公式中,得到分別配適上述兩種模型之 MFIV。
用線性迴歸模型去驗證這兩種計算之 MFIV 何者對於市場上的實際波動度最有解釋力,其中線性迴歸式為:
FRV_t=α+β_1 MLN+β_2 MLNbk+β_3 RV_t+β_4 GJR+ε
三、研究結果
研究結果顯示出,MLNbk 模型所計算之 MFIV 較 MLN 模型所計算之 MFIV 對實際波動度較有解釋力,其 P 值比較小,也比實際市場波動度還顯著,可以拒絕虛無假設,此意涵在計算 MFIV 時,考量公司破產機率較能預測未來 實際波動度。
Stock option prices contain forecasting information about stock price volatility and potentially , the probability of default. So , we use BAC stock option market data to research whether future realized volatility is explained by two types of model-free implied volatility ( MFIV ) . Here are our two MFIV estimations. We adopt a risk-neutral density ( RND ) model consisting of a mixture of lognormal densities with probability of bankruptcy term ( MLNbk2 ) , and a mixture of lognormal ( MLN ) to estimate model-free implied volatility , and the realized volatility ( RV ) we want to know whether we add in the probability of bankruptcy term , it can have significant effect to estimate realized volatility.
After our experiment , we can conclude that MLNbk2 is better than MLN , we can say for forcasting realized volatility , add bankruptcy rate is better than not adding.
參考文獻
.
1. Antonio Camara, Ivilina Popova, Betty Simkins ( 2011 ): A comparative study of the probability of default for global financial firms, Journal of Bank & Finance.
2. Bakshi , G., Cao, C., and Chen, Z. ( 1997 ). Empirical performance of alternative option pricing models. Journal of Finance, 52, 2003–2049.
3. Fleming, J, Ostdiek , B., and Whaley, R. E. (1995). Predicting stock market volatility: A new measure. Journal of Futures Markets, 15, 265–302.
4. Giovanni Barone – Adesi and Robert E. Whaley ( 1987 ).Efficient Analytic Approximation of American Option Values. American Finance Association.
5. George J. Jiang and Yisong S. Tian ( 2005 ). The Model-Free Implied Volatility and Its Information Content, Journal of Finance, 49, 2050–2088.
6. Jiang, G. J., and Tian, Y. S. (2012). A random walk down the options market. Journal of Futures Markets, 32, 505–535.
7. Kai-Jiun Chang, Mao-Wei Hung and Yaw-Huei Wang: Model-free Implied Volatilities from Alternative Implementation Approaches and Their Information Contents for Future Volatility.
8. Mark Britten-Jones and Anthony Neuberger: Option Price, Implied Price Process, and Stochastic Volatility.
9. Taylor Lili Wang Yuan-yuan Zhangstephen J.: Investigating The Information Content of The Model-Free Volatility Expectation by Monte Carlo Methods.
10. Taylor, S. J., Yadav, P. K., and Zhang, Y. (2009). Cross-sectional analysis of risk-neutral skewness. Journal of Derivatives, 4, 38–52.
11. Xu, X., and Taylor, S. J. (1995). Conditional volatility and the informational efficiency of the PHLX currency options market. Journal of Banking & Finance, 19, 803–821.
12. 衍生性金融商品,期貨與選擇權,金鐵英.金鐵珊 博士著,新陸書局股份有限公司發行。