研究生: |
伍君堯 Wu, Chun-Yao |
---|---|
論文名稱: |
超音波結合磁場之複合基因遞送平台應用於 帕金森氏症的治療 Ultrasound-magnetic hybrid gene delivery system for Parkinson’s disease mice treatment |
指導教授: |
葉秩光
Yeh, Chih-Kuang |
口試委員: |
林玉俊
Lin, Yu-Chun 張建文 Chang, Chien-Wen 劉浩澧 Liu, Hao-Li |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 帕金森氏症 、基因治療 、超音波 |
外文關鍵詞: | Parkinson's disease, Gene therapy, ultrasound |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
帕金森氏症 (Parkinson’s disease, PD)屬於慢性神經退化性疾病,相較於傳 統的藥物及手術治療,基因治療特有的內生性及長效性使其更適合被用於 PD 的治療。然而由於基因片段 (plasmid DNA, pDNA)的在體循環的過程中其穩定 性差且無法有效地進入細胞核產生轉染的效果,因此適當的基因載體 (Gene vector)在基因治療中扮演關鍵的角色。傳統的基因載體多以病毒為主,病毒擁 有非常良好的轉染效果,藉由感染的方式使宿主細胞大量產生特定蛋白,然而 安全性及高成本大幅地限制其應用發展。相反地,非病毒載體雖具備安全性及 易被製備等優點使其擁有高度的潛力,然而其轉染效果卻遠低於病毒式載體。 在非病毒式載體將 pDNA 遞送進細胞核的過程會遇到來自細胞胞器的阻礙導 致轉染率下降,阻礙包含:(1)細胞質:細胞質是由雙層磷脂質組成的親脂層,一 般外來物質藉由胞吞 (endocytosis)的方式進入細胞,然而胞吞所需的時間往往 要長達數個小時,導致 pDNA 等親水物質無法有效地進入細胞; (2)溶酶體系統: 溶酶體內含有大量酸性水解酵素,其原功能是用於保護細胞免於外來物質的侵 入,然而在基因遞送的過程中 pDNA 容易被溶酶體分解導致轉染效果大幅下 降; (3)細胞骨架:pDNA 於細胞內的輸送是藉由運動蛋白 (motor protein)的幫助 下沿著細胞骨架而進到細胞核,然而錯綜復雜的細胞骨架結構導致 pDNA 無法 有效地進到細胞核進行轉染,此外在治療腦內疾病時還必須考慮血腦屏障的因 素。本研究提出複合式的基因載體以突破基因遞送的阻礙,利用 SSPEI-SPIO (PSPIO)與 pDNA 以縮合的方式相接形成 PSPIO-pDNA,接著再將此複合材料 掛載至微氣泡 (microbubbles, MBs)表面 形成具備聲學及磁學特性的 PSp-MBs 複合式基因載體。藉由聲學穴蝕效應及磁導引的效果可以有效地突破細胞膜的 阻礙將 PSPIO-pDNA 遞送入細胞質中,接著再靠著 SSPEI 產生的海綿質子效應幫助逃離溶酶體的分解,最後再靠著二次磁場使細胞骨架排列一致使 pDNA 更有效率地遞送至細胞核。
本研究成功利用電性吸附的方式以 3.61 pg/MB 的掛載效率將 PSPIO-pDNA(191±2.26 nm)掛載至 MB (1.18±0.04 μm)上,並以 pGFP 與 pGDNF 分別 利用SH-sy5y 細胞株進行細胞實驗驗證其基因轉染效率與MitroPark帕金森氏 症動物模型的治療。在細胞實驗中首先同時利用超音波(frequency = 1 MHz, pressure = 0.3 MPa, duty cycles = 0.5 %, sonication duration = 1 min)及磁導引 (0.37 T, 20 mins)將 PSPIO-pDNA 送入細胞質中,接著將細胞於細胞培養箱放置 24 小時等待海棉質子效應及 PSPIO 與 pDNA 分離後,再利用二次磁場 (0.37 T, 60 mins)使 pDNA 更有效率地遞送至細胞核,再經過 24 小時後以流式細胞 儀定量轉染結果。另外,本研究紀錄老鼠行走過 80 公分之獨木橋所需的時間 及老鼠於開放空間行走的總距離來觀察老鼠之運動能力與意願並利用西方墨 點分析法以驗證帕金森氏症的治療效果。
根據轉染定量結果,本研究提出的基因轉染平台中超音波與磁導引分別提升 1.49 倍與 1.50 倍,而同時施打超音波並配合磁導引時則能提升 2.45 倍且基因 轉染效率達到 16.35±0.46 %,而在加入二次磁場後則能將轉染效率提升至 22.73±6.33 %,是目前商用轉染試劑 TransIT®-LT1 的 2.2 倍。此外,在帕金森 氏症的治療當中,經過治療的老鼠可以分別提升 1.5 倍的平衡能力及 3.06 倍 的運動能力,且在西方墨點分析法中可以提升 2.1 倍的 TH+含量,代表老鼠在 經過治療過後可以有效提升合成多巴胺的效率。本研究提出超音波結合磁場之 基因遞送平台,藉由 PSp-MBs 本身表現之聲學及磁學特性下,搭配超音波與 磁場可以有效地開啟血腦屏障並突破非病毒式載體在基因遞送上的限制,有效 地將 pDNA 遞送至細胞核達到轉染效果,此外本研究成功遞送 pGDNF 應用於 帕金森氏症的治療,未來此平台可結合其他基因片段並用於其他神經退化性疾 病的治療。
Genetic treatment for Parkinson’s disease (PD) by plasmid glial cell-line derived neurotrophic factor (pGDNF) has the potent trophic effect on damaged dopaminergic neurons. Ultrasound (US)-based plasmid DNA (pDNA) delivery is a promising mean for central nervous system treatment. However, three barriers including, (1) cell membrane reducing intracellular pDNA uptake, (2) lysosome degrading the delivered pDNA and (3) cytoskeleton lowering pDNA entry into nucleus, hamper pDNA transfection and expression (typically 4-10 %). This study proposed the polyethylenimine (PEI)-superparamagnetic iron oxide-pDNA loaded microbubbles (PSp-MBs) in conjunction with US and two-step magnetic force to increase the efficiency of gene delivery. In other words, the intracellular accumulation of PSp complexes was enhanced by concurrently performing US (cavitation) and step I magnetic force (magnetic effect). Secondly, the PEI allowed PSp complexes escaping from lysosome degradation (proton sponge effect). In final, the amount of pDNA entering nucleus could be increased by step II magnetic-mediated cytoskeletons re-organization (magnetic effect).
The PSp-MBs (3.61 pg PSp/MB) were prepared by loading PSp (150±5.4 nm) onto the lipid-shell of MBs (1.18±0.04μm) by electrostatic force. The plasmid green fluorescence protein (pGFP) and pGDNF were used to quantify the efficiency of gene delivery and repair dopaminergic neurons in SH-sy5y neuron-like cell and genetic PD mice (MitoPark), respectively. The PSp delivery was carried out by FUS (frequency = 1 MHz, pressure = 0.3 MPa, duty cycles = 0.5 %, sonication duration = 1 min) and step I magnetic force (0.37 T, 20 mins) with PSp-MBs. After lysosome escape, the step II magnetic force (0.37 T, 60 mins) was applied to the right side of cells for pDNA transporting into nuclear. To verify the in vivo treatment outcome, the time for crossing an 80 cm-beam and the walking distance in open field by PD’s mice (N=30) were recorded weekly to trace the motor balance and willingness, respectively.
The gene transfection rate in the proposed system was 2.2 fold higher than that of the commercial agent (TransIT®-LT1). The transfection rates could be boosted up ~11%, ~7%, and 2% by cavitation-magnetic hybrid enhanced cell membrane permeabilization, proton sponge effect and magnetic-assisted cytoskeleton- reorganization, respectively. In vivo data suggested that the system improved 1.5 and 3.06 folds of balance ability and motor ability compared to untreated PD mice, individually. This study proposed a novel US-magnetic hybrid gene delivery platform and potentially could be integrated with other therapeutic genes for treating neurodegenerative diseases in future.
1] H. Chen et al., “Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based cohort study,” Lancet, vol. 389, no. 10070, pp. 718–726, 2017.
[2] M. Politis, K. Wu, S. Molloy, P. G. Bain, K. R. Chaudhuri, and P. Piccini, “Parkinson’s disease symptoms: The patient’s perspective,” Mov. Disord., vol. 25, no. 11, pp. 1646–1651, 2010.
[3] H. C. Cheng, C. . Ulane, and R. . Burke, “Clinical progression in Parkinson’s disease and the neurobiology of Axons,” Ann. Neurol., vol. 67, no. 6, pp. 715– 725, 2010.
[4] A. Funkiewiez et al., “Long term of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease,” J. Neurol. Neurosurg. Psychiatry, vol. 75, no. 6, pp. 834–839, 2004.
[5] A. B. Singleton et al., “α-Synuclein Locus Triplication Causes Parkinson’s Disease,” Science (80-. )., vol. 302, no. 5646, p. 841, 2003.
[6] W. R. G. Gibb and A. J. Lees, “Occasional review The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson ’ s disease,” J. Neurol. Neurosurg. Psychiatry, vol. 51, no. 1, pp. 745–752, 1988.
[7] M. G. Spillantini, M. L. Schmidt, V. M.-Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “alpha-Synuclein in Lewy bodies,” Nature, vol. 388, no. 6645, pp. 839–840, 1997.
[8] T. B. Sherer, R. Betarbet, and J. T. Greenamyre, “Pesticides and Parkinson’s disease.,” ScientificWorldJournal., vol. 1, pp. 207–208, 2001.
[9] P. Hickey and M. Stacy, “Deep brain stimulation: A paradigm shifting approach to treat Parkinson’s disease,” Front. Neurosci., vol. 10, no. APR, pp. 1–11, 2016.
[10] E. Stimulation, O. F. The, and S. Nucleusadvanced, “E L EC T RICAL ST IMUL AT ION OF T HE SUB TH A L A MIC NUCLEUS IN A DVA NC ED PA RK INS ON ’ S D IS EASE ELECTRICAL STIMULATION OF THE SUBTHALAMIC NUCLEUS IN ADVANCED,” pp. 1105–1111, 1998.
[11] R. . Godwin-Austen, C. . Frears, E. . Tomlinson, and H. W. . Kok, “Effects of L-dopa in Parkinson’s disease,” Lancet, vol. 294, no. 7613, pp. 165–168, 1969.
[12] I. Ziv, R. Zilkha-Falb, D. Offen, A. Shirvan, A. Barzilai, and E. Melamed, “Levodopa induces apoptosis in cultured neuronal cells - A possible accelerator of nigrostriatal degeneration in Parkinson’s disease?,” Mov. Disord., vol. 12, no. 1, pp. 17–23, 1997.
[13] E. Melamed, D. Offen, A. Shirvan, R. Djaldetti, A. Barzilai, and I. Ziv,
84
“Levodopa toxicity and apoptosis.,” Ann. Neurol., vol. 44, no. 3 Suppl 1, pp.
S149-54, 1998.
[14] A. H. V Schapira, “The clinical relevance of levodopa toxicity in the treatment
of Parkinson’s disease,” Mov. Disord., vol. 23, no. SUPPL. 3, 2008.
[15] N. Genina, E. M. Janßen, A. Breitenbach, J. Breitkreutz, and N. Sandler,
“Evaluation of different substrates for inkjet printing of rasagiline mesylate,”
Eur. J. Pharm. Biopharm., vol. 85, no. 3 PART B, pp. 1075–1083, 2013.
[16] M. G. Kaplitt et al., “Safety and tolerability of gene therapy with an adeno-
associated virus (AAV) borne GAD gene for Parkinson’s disease: an open
label, phase I trial,” Lancet, vol. 369, no. 9579, pp. 2097–2105, 2007.
[17] S. FAHN et al., “Levodopa and the progression of Parkinson’s disease.,” 1.
FAHN S, OAKES D, SHOULKSON I, KIEBIRTZ K, RUDOLPH A, LANG A, al. Levodopa Progress. Park. Dis. N. Engl. J. Med. 2004;351(24)2498–508., vol. 351, no. 24, pp. 2498–508, 2004.
[18] N.Unitetal.,“TheNewEnglandJournalofMedicineAFIVE- YEAR STUDY OF THE INCIDENCE OF DYSKINESIA IN PATIENTS WITH,” 2000.
[19] J. M. Rabey et al., “Rasagiline mesylate, a new MAO-B inhibitor for the treatment of Parkinson’s disease: A double-blind study as adjunctive therapy to levodopa,” Clin. Neuropharmacol., vol. 23, no. 6, pp. 324–330, 2000.
[20] C. Universitaria, “Deep-Brain Stimulation of the Subthalamic Nucleus or the Pars,” English J., vol. 345, no. 13, pp. 956–963, 2001.
[21] S. Nikol and T. Y. Huehns, “Preclinical and Clinical Experience in Va s c u l a r Gene Therapy : Advantages Over Conservative / Standard T h e r a p y,” vol. 13, no. 4, pp. 333–338, 2001.
[22] S. H. Chen, H. D. Shine, J. C. Goodman, R. G. Grossman, and S. L. Woo, “Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo.,” Proc. Natl. Acad. Sci. U. S. A., vol. 91, no. 8, pp. 3054–3057, 1994.
[23] A. C. Nathwani et al., “Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B,” N. Engl. J. Med., vol. 371, no. 21, pp. 1994–2004, 2014.
[24] W. N. Sivak et al., “Delivery of chondroitinase ABC and glial cell line-derived neurotrophic factor from silk fibroin conduits enhances peripheral nerve regeneration,” J. Tissue Eng. Regen. Med., vol. 11, no. 3, pp. 733–742, 2017.
[25] L. Galam et al., “Adenovirus-mediated transfer of the SOCS-1 gene to mouse lung confers protection against hyperoxic acute lung injury,” Free Radic. Biol. Med., vol. 84, pp. 196–205, 2015.
85
[26] T. Gjetting et al., “In vitro and in vivo effects of polyethylene glycol (PEG)- modified lipid in DOTAP/cholesterol-mediated gene transfection,” Int. J. Nanomedicine, vol. 5, no. 1, pp. 371–383, 2010.
[27] A. V. V. Oliveira, G. A. Silva, and D. C. Chung, “Enhancement of chitosan- mediated gene delivery through combination with phiC31 integrase,” Acta Biomater., vol. 17, pp. 89–97, 2015.
[28] D. J. Bharali et al., “Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain.,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 32, pp. 11539–44, 2005.
[29] F. Scherer et al., “Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo,” Gene Ther., vol. 9, no. 2, pp. 102–109, 2002.
[30] M. Bez et al., “In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs,” Sci. Transl. Med., vol. 9, no. 390, pp. 1–10, 2017.
[31] J. C. Bensadoun, N. Déglon, J. L. Tseng, J. L. Ridet, A. D. Zurn, and P. Aebischer, “Lentiviral vectors as a gene delivery system in the mouse midbrain: Cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF,” Exp. Neurol., vol. 164, no. 1, pp. 15–24, 2000.
[32] J. H. Kordower et al., “in Primate Models of Parkinson ’ s Disease Neurodegeneration Prevented by Lentiviral Vector Delivery of GDNF in Primate Models of Parkinson ’ s Disease,” October, vol. 767, no. 2000, pp. 767–774, 2012.
[33] S. Hernando et al., “Intranasal Administration of T A T -Conjugated Lipid Nanocarriers Loading GDNF for Parkinson’s Disease,” Mol. Neurobiol., pp. 1– 11, 2017.
[34] C. Y. Lin et al., “Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson’s disease mouse model,” J. Control. Release, vol. 235, pp. 72–81, 2016.
[35] R. W. Herzog et al., “Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector,” Nat. Med., vol. 5, no. 1, pp. 56–63, 1999.
[36] D. Kirik, B. Georgievska, and A. Björklund, “Localized striatal delivery of GDNF as a treatment for Parkinson disease,” Nat. Neurosci., vol. 7, no. 2, pp. 105–110, 2004.
[37] L. Nault, A. Cumbo, R. F. Pretôt, M. A. Sciotti, and P. Shahgaldian, “Cell transfection using layer-by-layer (LbL) coated calixarene-based solid lipid
86
nanoparticles (SLNs),” Chem. Commun., vol. 46, no. 30, pp. 5581–5583, 2010.
[38] M. A. R. Y. B. G. Oldring and J. A. F. G. Reenleaf, “● Original Contribution
ARTIFICIAL CAVITATION NUCLEI SIGNIFICANTLY ENHANCE ACOUSTICALLY INDUCED CELL TRANSFECTION,” vol. 24, no. 4, pp. 587–595, 1998.
[39] L. B. Feril, R. Ogawa, K. Tachibana, and T. Kondo, “Optimized ultrasound- mediated gene transfection in cancer cells,” Cancer Sci., vol. 97, no. 10, pp. 1111–1114, 2006.
[40] S. Kawakami, S. Suzuki, F. Yamashita, and M. Hashida, “Induction of apoptosis in A549 human lung cancer cells by all-trans retinoic acid incorporated in DOTAP/cholesterol liposomes,” J. Control. Release, vol. 110, no. 3, pp. 514–521, 2006.
[41] S. Huth et al., “Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer,” J. Gene Med., vol. 6, no. 8, pp. 923–936, 2004.
[42] R. Y. Huang, P. H. Chiang, W. C. Hsiao, C. C. Chuang, and C. W. Chang, “Redox-Sensitive Polymer/SPIO Nanocomplexes for Efficient Magnetofection and MR Imaging of Human Cancer Cells,” Langmuir, vol. 31, no. 23, pp. 6523–6531, 2015.
[43] L. Jiang and L. Gao, “Modified carbon nanotubes: An effective way to selective attachment of gold nanoparticles,” Carbon N. Y., vol. 41, no. 15, pp. 2923–2929, 2003.
[44] Q. Huang et al., “Effective Gene Transfer into Central Nervous System Following Ultrasound-Microbubbles-Induced Opening of the Blood-Brain Barrier,” Ultrasound Med. Biol., vol. 38, no. 7, pp. 1234–1243, 2012.
[45] C. Tros de Ilarduya, Y. Sun, and N. Düzgüneş, “Gene delivery by lipoplexes and polyplexes,” Eur. J. Pharm. Sci., vol. 40, no. 3, pp. 159–170, 2010.
[46] M. A. Zanta, P. Belguise-Valladier, and J. P. Behr, “Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus.,” Proc. Natl. Acad. Sci. U. S. A., vol. 96, no. 1, pp. 91–6, 1999.
[47] S. E. Bullard, M. Griss, S. Greene, and A. Gekker, Encyclopedia of Clinical Neuropsychology, vol. 28, no. 1. 2013.
[48] K. Ulbrich, T. Hekmatara, E. Herbert, and J. Kreuter, “Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB),” Eur. J. Pharm. Biopharm., vol. 71, no. 2, pp. 251–256, 2009.
[49] E. A. Neuwelt, K. R. Maravilla, E. P. Frenkel, S. I. Rapaport, S. A. Hill, and P. A. Barnett, “Osmotic blood-brain barrier disruption. Computerized
87
tomographic monitoring of chemotherapeutic agent delivery,” J. Clin. Invest.,
vol. 64, no. 2, pp. 684–688, 1979.
[50] K. Hynynen, “Ultrasound for drug and gene delivery to the brain,” Adv. Drug
Deliv. Rev., vol. 60, no. 10, pp. 1209–1217, 2008.
[51] B. E. Noltingk and E. A. Neppiras, “Cavitation produced by ultrasonics,” Proc.
Phys. Soc. Sect. B, vol. 63, no. 9, pp. 674–685, 1950.
[52] W. C. Huang et al., “Tumortropic monocyte-mediated delivery of echogenic
polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia,”
Biomaterials, vol. 71, pp. 71–83, 2015.
[53] H. T. Tien and A. L. Ottova, “The lipid bilayer concept and its experimental
realization: From soap bubbles, kitchen sink, to bilayer lipid membranes,” J.
Memb. Sci., vol. 189, no. 1, pp. 83–117, 2001.
[54] M. Transfection and I. N. Vitro, “● Original Contribution,” vol. 28, no. 6, pp.
817–822, 2002.
[55] T. Hikima, Y. Hirai, and K. Tojo, “Effect of ultrasound application on skin
metabolism of prednisolone 21- acetate,” Pharmaceutical Research, vol. 15,
no. 11. pp. 1680–1683, 1998.
[56] J. D. Hazle, R. Jason Stafford, and R. E. Price, “Magnetic resonance imaging-
guided focused ultrasound thermal therapy in experimental animal models: Correlation of ablation volumes with pathology in rabbit muscle and VX2 tumors,” J. Magn. Reson. Imaging, vol. 15, no. 2, pp. 185–194, 2002.
[57] M. Ariani et al., “Dissolution of peripheral arterial thrombi by ultrasound,” Circulation, vol. 84, no. 4, pp. 1680–1688, 1991.
[58] I. Lentacker, I. De Cock, R. Deckers, S. C. De Smedt, and C. T. W. Moonen, “Understanding ultrasound induced sonoporation : De fi nitions and underlying mechanisms ☆,” Adv. Drug Deliv. Rev., vol. 72, pp. 49–64, 2014.
[59] H. Chen and E. E. Konofagou, “The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure,” J. Cereb. Blood Flow Metab., vol. 34, no. 7, pp. 1197–1204, 2014.
[60] Y. Liu, J. Yan, P. J. Santangelo, and M. R. Prausnitz, “DNA uptake, intracellular trafficking and gene transfection after ultrasound exposure,” J. Control. Release, vol. 234, pp. 1–9, 2016.
[61] O. Boussif et al., “A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine.,” Proc. Natl. Acad. Sci., vol. 92, no. 16, pp. 7297–7301, 1995.
[62] D. Fischer, T. Bieber, Y. Li, H. P. Elsässer, and T. Kissel, “A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: Effect of molecular weight on transfection efficiency and
88
cytotoxicity,” Pharmaceutical Research, vol. 16, no. 8. pp. 1273–1279, 1999.
[63] K. W. Leong, K. Roy, H.-Q. Mao, and S.-K. Huang, “Oral gene delivery with
chitosan|[ndash]|DNA nanoparticles generates immunologic\nprotection in a
murine model of peanut allergy,” Nat. Med., vol. 5, no. 4, pp. 387–391, 1999.
[64] V. Toncheva et al., “Novel vectors for gene delivery formed by self-assembly
of DNA with poly(L-lysine) grafted with hydrophilic polymers,” Biochim.
Biophys. Acta - Gen. Subj., vol. 1380, no. 3, pp. 354–368, 1998.
[65] A. Akinc, M. Thomas, A. M. Klibanov, and R. Langer, “Exploring
polyethylenimine-mediated DNA transfection and the proton sponge
hypothesis,” J. Gene Med., vol. 7, no. 5, pp. 657–663, 2005.
[66] S. M. Zou, P. Erbacher, J. S. Remy, and J. P. Behr, “Systemic linear
polyethylenimine (L-PEI)-mediated gene delivery in the mouse,” J. Gene Med.,
vol. 2, no. 2, pp. 128–134, 2000.
[67] V . Kafil and Y . Omidi, “Cytotoxic impacts of linear and branched
polyethylenimine nanostructures in A431 cells,” BioImpacts, vol. 1, no. 1, pp.
23–30, 2011.
[68] L. Parhamifar, A. K. Larsen, A. C. Hunter, T. L. Andresen, and S. M.
Moghimi, “Polycation cytotoxicity: A delicate matter for nucleic acid therapy -
focus on polyethylenimine,” Soft Matter, vol. 6, no. 17, pp. 4001–4009, 2010.
[69] Q.-Q. Zhao et al., “N/P Ratio Significantly Influences the Transfection
Efficiency and Cytotoxicity of a Polyethylenimine/Chitosan/DNA Complex,”
Biol. Pharm. Bull., vol. 32, no. 4, pp. 706–710, 2009.
[70] M. Ogris, G. Walker, T. Blessing, R. Kircheis, M. Wolschek, and E. Wagner,
“Tumor-targeted gene therapy: Strategies for the preparation of ligand- polyethylene glycol-polyethylenimine/DNA complexes,” J. Control. Release, vol. 91, no. 1–2, pp. 173–181, 2003.
[71] R. Kircheis et al., “Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery,” Gene Ther., vol. 4, no. 5, pp. 409–418, 1997.
[72] L. Gao et al., “Efficacy of MRI visible iron oxide nanoparticles in delivering
minicircle DNA into liver via intrabiliary infusion,” Biomaterials, vol. 34, no.
14, pp. 3688–3696, 2013.
[73] published by Dove Press, “IJN-155537-superparamagnetic-iron-oxide-
nanoparticles-modified-with-pol,” pp. 1851–1865, 2018.
[74] D. Li et al., “Theranostic nanoparticles based on bioreducible
polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging,” Int. J. Nanomedicine, vol. 9, no. 1, pp. 3347– 3361, 2014.
[75] H. Shen, S. Tong, G. Bao, and B. Wang, “Structural responses of cells to
89nintracellular magnetic force induced by superparamagnetic iron oxide
nanoparticles,” Phys. Chem. Chem. Phys., vol. 16, no. 5, pp. 1914–1920, 2014.
[76] Y. Qiu et al., “Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions,” Nat. Commun., vol. 8, pp. 1–10, 2017.
[77] Q. Wan et al., “Self-assembled magnetic theranostic nanoparticles for highly sensitive MRI of minicircle DNA delivery,” Nanoscale, vol. 5, no. 2, pp. 744–752, 2013.
[78] N. Lee and T. Hyeon, “Designed synthesis of uniformly sized iron oxide
nanoparticles for efficient magnetic resonance imaging contrast agents,” Chem.Soc. Rev., vol. 41, no. 7, pp. 2575–2589, 2012.
[79] S. Kayal and R. V. Ramanujan, “Doxorubicin loaded PVA coated iron oxide
nanoparticles for targeted drug delivery,” Mater. Sci. Eng. C, vol. 30, no. 3, pp.
484–490, 2010.
[80] B. Chertok et al., “Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors,” Biomaterials, vol. 29, no. 4, pp.487–496, 2008.
[81] S. Laurent et al., “Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications (vol 108, pg 2064, 2008),” Chem. Rev., vol. 108, no. 6, pp. 2064–2110, 2008.
[82] R. Namgung et al., “Hybrid superparamagnetic iron oxide nanoparticle-
branched polyethylenimine magnetoplexes for gene transfection of vascular
endothelial cells,” Biomaterials, vol. 31, no. 14, pp. 4204–4213, 2010.
[83] S. J. Cheong et al., “Superparamagnetic iron oxide nanoparticles-loaded
chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene
delivery system,” Int. J. Pharm., vol. 372, no. 1–2, pp. 169–176, 2009.
[84] K. H. Bremner et al., “Utilization of synthetic peptides containing nuclear
localization signals for nonviral gene transfer systems.,” Gene Ther, vol. 5, no.
2–3, pp. 401–415, 2002.
[85] M. A. E. M. van der Aa et al., “An NLS peptide covalently linked to linear
DNA does not enhance transfection efficiency of cationic polymer based gene
delivery systems,” J. Gene Med., vol. 7, no. 2, pp. 208–217, 2005.
[86] V. Ondřej, E. Lukášová, M. Falk, and S. Kozubek, “The role of actin and
microtubule networks in plasmid DNA intracellular trafficking,” Acta Biochim.
Pol., vol. 54, no. 3, pp. 657–663, 2007.
[87] N. Hu et al., “Involvement of the blood-brain barrier opening in cognitive
decline in aged rats following orthopedic surgery and high concentration of
sevoflurane inhalation,” Brain Res., vol. 1551, pp. 13–24, 2014.
[88] S. N. Tabatabaei, H. Girouard, A. S. Carret, and S. Martel, “Remote control of the permeability of the blood-brain barrier by magnetic heating of nanoparticles: A proof of concept for brain drug delivery,” J. Control. Release, vol. 206, pp. 49–57, 2015.
[89] M. Yepes, M. Sandkvist, E. G. Moore, T. H. Bugge, D. K. Strickland, and D. a Lawrence, “Tissue-type plasminogen activator induces opening of the blood- brain barrier via the LDL receptor – related protein,” J. Clin. Invest., vol. 112, no. 10, pp. 1533–1540, 2003.
[90] F. Blandini and M.-T. Armentero, “Animal models of Parkinson’s disease,” FEBS J., vol. 279, no. 7, pp. 1156–1166, 2012.
[91] M. I. Ekstrand and D. Galter, “The MitoPark Mouse - An animal model of Parkinson’s disease with impaired respiratory chain function in dopamine neurons,” Park. Relat. Disord., vol. 15, no. SUPPL. 3, pp. S185–S188, 2009.
[92] D. Galter et al., “MitoPark mice mirror the slow progression of key symptoms and L-DOPA response in Parkinson’s disease,” Genes, Brain Behav., vol. 9, no. 2, pp. 173–181, 2010.
[93] M. Terzioglu and D. Galter, “Parkinson’s disease: Genetic versus toxin- induced rodent models,” FEBS J., vol. 275, no. 7, pp. 1384–1391, 2008.
[94] S. RajaSankar, T. Manivasagam, and S. Surendran, “Ashwagandha leaf extract: A potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson’s disease,” Neurosci. Lett., vol. 454, no. 1, pp. 11–15, 2009.
[95] A. C. Kreitzer and R. C. Malenka, “Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models,” Nature, vol. 445, no. 7128, pp. 643–647, 2007.
[96] N. Rawal, C. Parish, G. Castelo-Branco, and E. Arenas, “Inhibition of JNK increases survival of transplanted dopamine neurons in Parkinsonian rats [2],” Cell Death Differ., vol. 14, no. 2, pp. 381–383, 2007.
[97] H. Promotes, M. B. Stromal, and T. Formation, “Riginal Rticle ®,” Analysis, pp. 337–347, 2003.
[98] Z. Liu et al., “Disruption of tumor neovasculature by microbubble enhanced ultrasound: A potential new physical therapy of anti-angiogenesis,” Ultrasound Med. Biol., vol. 38, no. 2, pp. 253–261, 2012.
[99] C. H. Fan et al., “Ultrasound/magnetic targeting with SPIO-DOX-microbubble complex for image-guided drug delivery in brain tumors,” Theranostics, vol. 6, no. 10, pp. 1542–1556, 2016.
[100] A. Katiyar, K. Sarkar, and P. Jain, “Effects of encapsulation elasticity on the stability of an encapsulated microbubble,” J. Colloid Interface Sci., vol. 336, no. 2, pp. 519–525, 2009.
[101] “art-3A10.1023-2FA-3A1018862827426.pdf.” .
[102] C. M. Panje et al., “Ultrasound-mediated gene delivery with cationic versus neutral microbubbles: Effect of DNA and microbubble dose on In Vivo
transfection efficiency,” Theranostics, vol. 2, no. 11, pp. 1078–1091, 2012.
[103] D. S. Wang et al., “Cationic versus Neutral Microbubbles for Gene Delivery in Cancer 1,” Radiology, vol. 264, no. 3, pp. 721–732, 2012.
[104] Z. Z. Shi et al., “Glutathione synthesis is essential for mouse development but not for cell growth in culture.,” Proc. Natl. Acad. Sci. U. S. A., vol. 97, no. 10, pp. 5101–6, 2000.
[105] A. van Wamel et al., “Vibrating microbubbles poking individual cells: Drug
transfer into cells via sonoporation,” J. Control. Release, vol. 112, no. 2, pp.
149–155, 2006.
[106] X. Chen, R. S. Leow, Y. Hu, J. M. F. Wan, and A. C. H. Yu, “Single-site
sonoporation disrupts actin cytoskeleton organization,” J. R. Soc. Interface,
vol. 11, no. 95, 2014.
[107] Z. Fan, R. E. Kumon, J. Park, and C. X. Deng, “Intracellular delivery and
calcium transients generated in sonoporation facilitated by microbubbles,” J.
Control. Release, vol. 142, no. 1, pp. 31–39, 2010.
[108] F.-Y. Yang, S.-H. Liu, F.-M. Ho, and C.-H. Chang, “Effect of ultrasound
contrast agent dose on the duration of focused-ultrasound-induced blood-brain barrier disruption,” J. Acoust. Soc. Am., vol. 126, no. 6, pp. 3344–3349, 2009.
[109] C. H. Fan et al., “Noninvasive, Targeted, and Non-Viral Ultrasound-Mediated
GDNF-Plasmid Delivery for Treatment of Parkinson’s Disease,” Sci. Rep., vol.
6, no. December 2015, pp. 1–11, 2016.
[110] H. X. Deng et al., “FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis,” Ann. Neurol.,
vol. 67, no. 6, pp. 739–748, 2010.
[111] D. M. Yurek and A. Fletcher-Turner, “GDNF partially protects grafted fetal
dopaminergic neurons against 6-hydroxydopamine neurotoxicity,” Brain Res.,
vol. 845, no. 1, pp. 21–27, 1999.
[112] C. Chen et al., “GDNF-expressing macrophages mitigate loss of dopamine
neurons and improve Parkinsonian symptoms in MitoPark mice,” Sci. Rep., vol. 8, no. 1, pp. 1–16, 2018.