簡易檢索 / 詳目顯示

研究生: 蔡芳瑩
論文名稱: 在G-凸空間上的同值點定理和匹配定理
Coincidence Theorems and Matching Theorems on G-convex Spaces
指導教授: 張東輝
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 23
中文關鍵詞: G-凸空間KKM性質同值點定理固定點定理匹配定理
外文關鍵詞: G-convex space, KKM property, coincidence theorem, fixed point theorem, matching theorem
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用推廣型凸空間的函數族G-S-KKM(X,Y,Z)及 -S-KKM(X,Y,Z)的特性,推導出一些同值定理、固定點定理及匹配定理。本文的結果推廣了許多學者的一些相關研究結果(如:[1], [3], [6], [9], [12], [17], [22])。


    In this paper, we shall use the properties of G-S-KKM mapping and -S-KKM mapping to get some coincidence theorems, fixed point theorems, and matching theorems. These results generalize many results of other authors (for example, see
    [1], [3], [6], [9], [12], [17], [22]).

    CONTENTS 1.INTRODUCTION-------------------5 2.PRELIMINARIES-------------------6 3.MAIN RESULTS -------------------10 4.MATCHING THEOREMS--------------- 17 5.REFERENCES ------------------- 22

    REFERENCES
    [1] Q. H. Ansari, Fixed point theorems for non-convex valued multifunctions, Southeast Asian Bull. Math. 26(2002), 15-20.
    [2] H. Ben-El-Michaiekh and P. Deguire, Approachability and fixed point for non-convex set-valued maps, J. Math. Anal. Appl. 170(1992), 477-500.
    [3] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
    [4] T. H. Chang, Generalized KKM theorem and its applications, Far East J. Math. Sci. 4(2)(1996), 137-147.
    [5] T. H. Chang, KKM property and Leray-Schauder principles, Far East J. Math. Sci. (1998) ,337-350.
    [6] T. H. Chang, Y. Y. Huang, J. C. Jeng and K. H. Kuo, On S-KKM property and related topics, J. Math. Anal. Appl. 229(1999), 212-227.
    [7] T. H. Chang, Y. Y. Huang, and J. C. Jeng, Fixed-point theorems for multifunctions in S-KKM class, Nonl. Anal. 44(2001), 1007-1017.
    [8] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961), 305-310.
    [9] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266(1984), 519-537.
    [10] B. Knaster, C. Kuratowski, S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale Simplexe, Fund. Math. 14(1929), 132-137.
    [11] M. Lassonde, Fixed points for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152(1990), 46-60.
    [12]Y. L. Lee, G-S-KKM theorem and its applications, Graduate Institute of Mathematics and Science, NHCTC, Hsin Chu, Taiwan.(2003).
    [13] S. Naoki, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991), 187-195.
    [14] S. Park, Generalizations of Ky Fan’s matching theorems and their applications, J. Math. Anal. Appl. 141(1989), 164-176.
    [15] S. Park, S. P. Singh and B. Watson, Some fixed point theorems for composites of acyclic maps, Proc. Amer. Math. Soc. 121(1994), 1151-1158.
    [16] S. Park and H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197(1996), 173-187.
    [17] S. Park, Five episodes related to generalized convex spaces, Proc. Nonl. Func. Anal. Appl. Vol 2.(1997), 49-61.
    [18] S. Park and H. Kim, Foundations of the KKM theory on generalized convex space, J. Math. Anal. Appl. 209(1997), 551-571.
    [19] S. Park, Elments of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math. 7(2000), 1-28.
    [20] S. Park, Remarks on topologies of generalized convex spaces, Nonlinear Funct. Anal. Appl. 5(2000), 67-79.
    [21] S. Park, Fixed point theorems in locally G-convex spaces, Nonlinear Anal. 48(2002), 869-879.
    [22] S. Park, Coincidence, almost fixed point, and minimax theorems on generalized convex spaces, J. Nonl. Conv. Anal. 4(1)(2003), 151-164.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE