簡易檢索 / 詳目顯示

研究生: 賴明宏
Lai, Ming-Hung
論文名稱: 利用局域化表面電漿共振增強金屬電化學矽蝕刻反應
Enhanced metal-assisted chemical etching on silicon by localized surface plasma resonance
指導教授: 李明昌
Lee, Ming-Chang
口試委員: 洪毓玨
Hung, Yu-Chueh
嚴大任
Yen, Ta-Jen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 56
中文關鍵詞: 局域化表面電漿共振金屬輔助化學蝕刻
外文關鍵詞: localized surface plasma resonance, metal-assisted chemical etching
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽基板的多孔奈米結構,因具有許多獨特的優越性質,廣泛應用在光電、生醫、半導體光學、光感測元件和太陽能電池等領域。本論文主要是將表面電漿與金屬輔助化學蝕刻法做結合,此方法最主要是藉由光源照射金屬奈米粒子所造成的表面電漿子增加金屬輔助化學蝕刻的速率。為探討此結合的矽基板多孔奈米結構,配置不同比例的化學蝕刻溶液、蒸氣式蝕刻法、不同波段光源照射及反應時間進行生成反應,再藉由電子顯微鏡檢測矽基板的多孔奈米結構的表面形貌,以及蝕刻率等性質討論。經過實驗後,我們可以發現,金屬奈米粒子的局域化表面電漿將會大大影響蝕刻速率,當照射我們所設計的局域化表面電漿波段時,金屬輔助化學蝕刻速度將會大大增加。藉由金屬奈米粒子的局域化表面電漿子的變化可結合金屬輔助化學蝕刻,更增加其實際應用的可能性。


    In recent years, since silicon nanostructures have many unique qualities, they have been applied to a wide variety of areas, including optoelectronic devices, biological, semiconductor optical devices, optical-sensing devices and solar cells. In this thesis, metal-assisted chemical etching of silicon incorporating localized surface plasma resonance was studied. The basic idea is that the etching rate is influenced by the light illuminating on the metal nanoparticles. Several case studies were carried out to examine the etching rate, including different content of the chemical etching solution, the vapor chemical etching method, and light sources with different wavelength bands. SEM images are taken to characterize the silicon nanopores, etching rate and so on. Via the experimental results, we concluded the localized surface plasmon (LSP) on the metal nanoparticles will affect the etching rate very much. These strong LSP modes increase the light absorption of Si, resulting in a large amount of holes injected in the silicon. It can explain why the etching speed was greatly enhanced and was wavelength dependent.

    摘要 I Abstract II 致謝 III 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3論文架構 3 第二章 理論背景 4 2.1表面電漿原理與種類 4 2.2金屬輔助化學蝕刻原理 10 第三章 元件製作 17 3-1 Au nanoparticle photonic crystal製作流程 17 第四章 實驗方法與分析 28 4-1材料與藥品 28 4-2實驗方法 28 4-2蒸氣式金屬輔助化學蝕刻 30 4-3金球表面電漿共振波長量測 32 4-4光輔助金屬化學蝕刻 34 4-5濾波透鏡分析與討論 42 4-6窄頻光源輔助金屬化學蝕刻 44 第五章 結果與討論 51 5-1結果與討論 51 5-2未來展望 52 參考文獻 53

    [1]A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots”, Science, vol. 271, pp. 933-937, 1996.
    [2]M. Haruta, “Size- and support-dependency in the catalysis of gold”, Catalysis Today, vol. 36, pp. 153-166, 1997.
    [3]N. R. Jana, “Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles”, Small, vol. 1, pp. 875-882, 2005.
    [4]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays”, Nature, vol. 391, pp. 667-669, 1998.
    [5]M. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, Appl. Phys. Lett., 73, p622( 1985).
    [6]L. T. Canham, “Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers”, Applied Physics Letters, vol. 57, pp. 1046-1048, 1990.
    [7]C. W. Tsao, P. Kumar, J. K. Liu, and L. Devoe, “Dynamic electrowettingon nanofilament silicon for matrix-free laser desorption/ionization mass spectrometry”, Analytical Chemistry, vol. 80, pp. 2973-2981, 2008.
    [8]E. P. Go, J. V. Apon, G. H. Luo, A. Saghatelian, R. H. Daniels, V. Sahi, R. Dubrow, B. F. Cravatt, A. Vertes, and G. Siuzdak, “Desorption/ionization on silicon nanowires”, Analytical Chemistry, vol. 77, pp. 1641-1646, 2005.
    [9]J. Wei, J. M. Buriak, and G. Siuzdak, “Desorption-ionization mass spectrometry on porous silicon”, Nature, vol. 399, pp. 243-246, 1999.
    [10]J. Teva, Z. J. Davis, and O. Hansen, “Electroless porous silicon formation applied to fabrication of boron-silica-glass cantilevers”, Journal of Micromechanics and Microengineering, vol. 20, pp. -, 2010.
    [11]K. Q. Peng, X. Wang, and S. T. Lee, “Gas sensing properties of single crystalline porous silicon nanowires”, Applied Physics Letters, vol. 95, pp. -, 2009.
    [12]T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells”, Nanotechnology, vol. 19, pp. -, 2008.
    [13]R. Chaoui, B. Mahmoudi, and Y. S. Ahmed, "Porous silicon antireflection layer for solar cells using metal-assisted chemical etching, “Physica Status Solidi a-Applications and Materials Science”, vol. 205, pp. 1724-1728, 2008.
    [14]William L. Barnes, Alain Dereux & Thomas W. Ebbesen,“Surface plasmon subwavelength optics”, Nature, Vol 424, 14, 824-830 (2003).
    [15]吳民耀, 劉威志,“表面電漿子理論與模擬”, 物理雙月刊, 廿八卷, 二期 (2006).
    [16]Sookyoung Roh, Taerin Chung, & Byoungho Lee“Overview of plasmonic sensors and their design methods”, Proc. of SPIE , Vol. 7853, 785303-1 (2010).
    [17]S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods”, J. Phys. Chem. B 103, 8410-8426 (1999).
    [18]J.P. Kottmann et. al., Phys. Rev. B 64, 235402 (2001); K. L. Kelly, et. al., J. Phys. Chem. B 107, 668(2003)
    [19]X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon”, Applied Physics Letters, vol. 77, pp. 2572-2574(2000).
    [20]S. Chattopadhyay, X. L. Li, and P. W. Bohn, “In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching”, Journal of Applied Physics, vol. 91, pp. 6134-6140(2002).
    [21]Y. Harada, X. L. Li, P. W. Bohn, and R. G. Nuzzo, “Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays”, Journal of the American Chemical Society, vol. 123, pp. 8709-8717(2001).
    [22]Ksenia Anokhin “Investigation of Metal-assisted Si Etching for Fabrication of Nonoimprint Lithography Stamps”, Technical report, IDE 1056, Oct.(2010).
    [23]Zhipeng Huang, Nadine Geyer, Peter Werner, Johannes de Boor, and Ulrich Gosele “Metal-Assisted Chemical Etching of Silicon:A Review”, Adv. Mater. 23, 285-308(2011).
    [24]S. Chattopadhyay, X. L. Li, P. W. Bohn, “In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching”, J. App. Phys. 91 , 6134 .(2002)
    [25]Kuiqing Peng, Aijiang Lu, Ruiqin Zhang, and Shuit-Tong Lee “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching”, Adv. Funct. Mater, 18, 3026-3035(2008).
    [26]Nacera Megouda, Toufik Hadjersi, Gaelle Piret, Rabah Boukherroub, Omar Elkechai, “Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution”, Applied Surface Science, 255, 6210–6216 (2009).
    [27]K. Tsujino and M. Matsumura, “Helical nanoholes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst”, Electrochemical and Solid State Letters, vol. 8, pp. C193-C195(2005).
    [28]G. P. Agrawal, Fiber-Optical Communication Systems, John Wileyand Sons, New York, 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE