研究生: |
陳佳明 Chen, Chia-Ming |
---|---|
論文名稱: |
一位國小五年級教師建立從造例到提出猜想臆測教學規範之行動研究 An Action Research of a Fifth-Grade Teacher Establishing the Norms of Conjecturing from Construction Stage Toward Formulation Stage |
指導教授: |
林碧珍
Lin, Pi-Jen |
口試委員: |
蔡文煥
Tsai, Wen-Huan 蔡寶桂 Tsai, Pao-Kuei |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所碩士在職專班 Mathematics & Science Education Master Inservice Program |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 臆測教學 、規範 、造例 、猜想 |
外文關鍵詞: | mathematics conjecturing, norms, construction stage, formulation stage |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討師生從造例到提出猜想的數學臆測歷程中,建立數學臆測規範時可能發生的問題及因應方式,進而從中了解教學問題及學生的學習情形,增進自己的數學教學知識及數學教學專業知能。
本研究使用行動研究,以研究者自身任教的五年級班級為研究場域,並參與林碧珍教授所主持的跨校教師數學專業成長團,以K版本「異分母分數加減法」及「容積」兩單元進行分析。研究期間透過教材分析資料、教學現場錄影錄音、學生工作單、成長團觀課後討論、諍友對話以及研究者觀課日誌、教學省思等資料蒐集與分析,進行教學反省及改進,讓研究者對於學生的學習情形及自身的教學專業有更多的了解及成長。
本研究建立的數學臆測規範有造例階段的「彙整資料」、「組織資料」、「觀察資料」和發現關係並提出猜想階段的「有憑有據」、「大膽猜測」、「確實檢驗」、「敘述完整」等七項數學臆測規範。
研究結果發現,數學臆測教學與數學臆測規範密不可分,透過數學臆測規範能讓教學者在數學臆測教學的實施更為順暢,也能讓初接觸臆測教學的學生及早進入臆測的情境中。透過「彙整資料」讓數據與策略得以整合;透過「組織資料」讓造例數據有系統且具有變化關係;透過「觀察資料」讓學生的觀察有依循的方向;透過「有憑有據」讓猜想更聚焦,增加猜想的存活度;透過「大膽猜測」鼓勵學生勇於猜想;透過「確實檢驗」建立檢驗模式;透過「敘述完整」讓猜想具有數學語言,敘述也更為精準。
最後,本研究對對實施數學臆測教學者和對建立數學臆測教學規範及未來研究方向提出建議。
The purpose of this study is to discuss the problems and the solutions that may occur when establishing the norms of conjecturing from construction stage toward formulation stage between teachers and students, thereby, realizing the issues of teaching and students’ learning status and enhancing mathematics teaching knowledge and expertise.
This study uses action research, with the fifth-grade class taught by the researcher as the research field and participates in the interdisciplinary teacher mathematics professional growth group chaired by Professor Lin Pi-Jen, with the K version of “Different Denominator Score Addition and Subtraction” and “Volume” these two units to analyze. With analyzing data and teaching materials, recording the videos and conversations, student work order, post-class discussion of growing groups, dialogues with friends and the diary of instruction-observer during the research time, the researcher reflect on self-teaching and improve, then having a better understanding of students learning and self-teaching-profession technique.
This research establishing seven norms of mathematics conjecturing including the “Data Compaction”, “Data Organization”, “Data Observation” at construction stage; and the “Abundant Evidence”, “Boldly Conjecture” and “Confirmed Examine” at formulation stage.
The research results find out that the mathematics conjecturing teaching and the norms of mathematical conjecturing are inseparable. By establishing the norms of mathematical conjunction, the instructor can smoothly use mathematics conjecturing teaching, also make students who first and further learn about the mathematics conjecturing to immerse into the situation of mathematics conjecturing.
” Data Compaction” integrate with data and strategies; “Data Organization” makes students to classify the product examples with terms; “Observing Data” let students following the direction to observe with. “. “Abundant Evidence” makes the conjecturing to focus on the target, so the conjecturing can be hold. “Boldly Conjecture” encourages students to make conjecturing. “Confirmed Examine” establishing the terms of examining. “Completely Describe” makes the conjecture turning into mathematics languages, so that the describe statement can be precisely.
Finally, this research provides suggestions to the mathematics conjecturing teaching instructors, the norms of mathematics conjecture and future research directions.
夏林清等譯(1997)。行動研究方法導論—教師動手做研究。台北市: 遠流出版事業股份有限公司。
陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,第六卷第二期191-218。
陳惠邦(1998)。教育行動研究。台北:師大書苑。
吳明隆(2001)。教育行動研究導論:理論與實務。台北:五南。
李美蓮、劉祥通(2003)。開啟國中代數教學的新視窗。科學教育月刊,265,2-15。
張佩琦、柳賢(2007)。運用臆測教學提升國三學生數學學習成效—以相似形為例。國立高雄師範大學數學教學碩士班學位論文,未出版,高雄市。
蕭淑惠(2010)。實施以臆測為中心的教學探討四年級學生臆測思維歷程與主動思考能力展現之行動研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
張克旭(2010)。以臆測為中心的探究教學對學生學習動機和學習成就影響之行動研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
林慧茵(2011)。探討以臆測為中心的探究教學對高職實用技能學程學生數學學習動機之影響。未出版碩士論文。國立彰化師範大學科學教育研究所。
蔡宗翰(2011)。高一數理資優班與普通班學生在數列級數單元的解題歷程中所展現的臆測思維與數學素養之比較。未出版碩士論文。國立彰化師範大學資賦優異研究所。
林碧珍(2013)。師資培育者幫助教師協助學生學習數學的教師專業發展研究。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC99-2511-S134-005-MY3),未出版。
黎玉女(2013)。一位六年級教師促進社會數學規範之行動研究。未出版碩士論文。
國立新竹教育大學數理教育研究所。
曾美焉(2014)。一位高年級教師設計數學臆測判斷真偽命題任務培養學生的反駁論證能力之行動研究。未出版碩士論文。國立新竹教育大學數理教育研究所。
林淑華(2015)。探討影響國中教師實施翻轉教學意圖之因素─以臺中市某國中為例。未出版碩士論文。
林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育學刊,23(1),83-110。
呂沅潤(2015)。數學臆測教學課室中國小四年級學生論證結構之比較。未出版碩士論文。國立新竹教育大學數理教育研究所。
張桂惠(2016)。一位國小五年級教師將數學臆測融入教學實踐之行動研究。未出版碩士論文。國立新竹教育大學數理教育研究所。
藍敏菁(2016)。一位國小三年級教師設計臆測任務融入數學教學之行動研究。未出版碩士論文。國立新竹教育大學數理教育研究所。
林碧珍(2016)。數學臆測任務設計與實踐。台北:師大書苑。
洪神佑(2016)。在數學臆測教學下一組國小六年級學生論證結構發展之研究。未出版碩士論文。國立新竹教育大學數理教育研究所。
林碧珍(2018)。數學臆測引動數學論證的課堂實踐。小學教學-數學版,連載於4,4-7及5,4-8。
西文文獻
Buck, G., Macintyre Latta, M., Leslie-Pelecky, D. (2007). Learning how to make inquiry into electricity and magnetism discernible to middle level teachers.Journal of Science Teacher Education, 18, 377-397.
Calder, N., Brown, T., Hanley, U., & Darby, S. (2006). Forming conjectures within a spreadsheet environment. Mathematics Education Research Journal, 18(3),100-116.
Cañadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, A. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1), 55–72.
Cobb, P., Wood, T., &Yackel. (1991). A constructivist Approach to Second Grade Mathematics. In von Glasersfeld, E. (Ed.), Radical Constructivism in Mathematics Education (pp157–176). Dordrecht: Kluwer Academic Publishers.
Cobb, P., &Yackel, E. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in mathematics Education,27(4), 458–477。
Edwards, T. G. & Hensien, S. M. (1999). Changing instructional practice through action research. Journal of Mathematics Teacher Education, 2, 187–206.
Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, The Netherlands: D. Reidel.
Giddens, A. (1990). The consequences of modernity. Cambridge: Polity Press.
Hardy, G. (2015). A mathematician's apology. Cambridge [England]: Cambridge University Press.
Krainer, K. (2006). Editorial: Action research and mathematics teacher education.Journal of Mathematics Teacher Education, 9, 213–219.
Latkatos, I.(1976). Proofs and refutations: The logic of mathematical discovery. NewYork: Cambridge University Press
Lawson, A. E. (2003). The nature and development of hypotheticopredictive argumentation with implications for science teaching. International Journal of Science Education, 25(11), 1387-1408.
Lin, P. J. (2015). Teaching the structure of standard algorithm of multiplication with 2-digit multipliers via conjecturing. Proceedings of the 23nd of International Congress of Mathematics Instruction (ICMI 23) Study, Theme: Primary mathematics study on whole numbers (pp. 456-463). June 3rd-7th. University of Macau, Macau SAR, China.
Mason, J., Burton, L., & Stacey, K. (1985). Thinking mathematically. Mento Park, California:Addison-Wesley Pulishers.
Mills, G. E. (2007). Action research: A guide for the teacher researcher. Upper Saddle River, NJ: Pearson Merrill Prentice Hall.
National Council of Teachers of Mathematics(NCTM). Principles and standards for school mathematics. Reston, VA: NCTM, 2000.
Polya, G.(1954). Mathematics and plausible reasoning. London, England: Oxford University Press.
Popper, K. R.(1963). Conjectures and refutations: The growth of scientific knowledge. London, England: Routledge and Began Paul.
Toulmin, S. E.(1958). The uses of argument. Cambridge: Cambridge University Press.