簡易檢索 / 詳目顯示

研究生: 蘇亦雋
Yi-Chun Su
論文名稱: 含鐵奈米碳管的電感量測:奈米電磁線圈的研究
Inductance of Encapsulated-Fe Carbon Nanotubes:Nano-electromagnetic Inductors
指導教授: 徐文光
Wen-Kuang Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 35
中文關鍵詞: 奈米碳管含鐵奈米碳管電容電感
外文關鍵詞: carbon nanotubes, encapsulated-Fe carbon nanotubes, capacitance, inductance
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在二維的模型下,奈米碳管的導電是經由表面pi電子雲的共振,其傳輸為等向性(isotropic)。但在三維的模型下,pi電子雲於費米能階的波函數是延著2Pz軸延伸約1 À,因此,碳管表面之波函數可分為二個分量,即平行管軸向之Jz與沿管圓周向之Jc分量。如於平行管軸的方向施加一電場,則沿管圓周向之Jc分量會被電場驅使而產生些許偏轉,此偏轉使Jc電流以螺旋形狀沿著碳管壁的圓周流動,類似線圈 (solenoid)。如果奈米碳管內包覆具鐵磁性的金屬,此包覆金屬的奈米碳管即成為一奈米電磁線圈。至今,關於奈米碳管內磁場的研究仍然缺乏,亦無直接的證據證實奈米碳管表面具螺旋形狀的電流與電感性(inductive phase),本實驗以快速且經濟(不需利用高價儀器)的方式,將單束含鐵奈米碳管懸空架橋於兩電極之間,通以交流電進行量測,成功地測得含鐵奈米碳管的電感值,此電感值的大小及數量級為mH,間接證明了碳管表面的螺旋電流。


    Carbon nanotubes(CNTs)are graphene sheets rolled up into cylindrical structure and electron transport via tube surface lattice is essentially isotropic. This description is based on a 2D lattice model. In a 3D approach, electron wave function near to the Fermi level is extended by 1 Å along the 2Pz orbit and electron transport thus becomes sensitive to electron field. Reports indicate two possible paths of charge carrier in a small CNT, i.e. along tube axis and circumference. When electric field is applied in parallel with tube axis the electron flux along circumference is diverted into a helix current, similar to nano-coils. This spiral current becomes apparent when angular frequency is smaller than stark frequency in an AC field.
    To date, explore of magnetic field within a CNT remains as challenge and a straightforward verification is to encapsulate magnetic materials in CNTs so interior magnetic field is enhanced and becomes measurable. In this work, individual Fe-encapsulated CNTs bridging tungsten electrodes are verified and measured by AC impedance technique. Inductance at different frequency is detected and is on the order of mH.

    第一章 文獻回顧............................... ....1 1-1 奈米碳管的簡介…………………………………………..1 1-2 奈米碳管的發現與主要合成法…………………………..2 1-3 奈米碳管的表面結構……………………………………..3 1-4 於奈米碳管中填充金屬的文獻回顧……………………..5 1-5 測量奈米碳管電性的文獻回顧…………………………...8 1-6 奈米碳管的螺旋電流理論…………………………...……9 1-7 實驗動機與目的…………………………………………10 第二章 實驗方法及實驗步驟……………………………….12 2-1本實驗所用的含鐵多層奈米碳管的製造方法………….12 2-2 實驗儀器…………………………………………………13 2-3 量測單束奈米碳管之RCL的實驗步驟………………...14 第三章 結果與討論.................................20 3-1 含鐵奈米碳管……………………………………………20 3-2頻率變化下含鐵奈米碳管之電阻、電容、電感………….23 3-3對電容的討論…………………………………………….31 3-4對電感的討論…………………………………………….32 第四章 結論………………………………………………….33 參考資料……………………………………………………...34

    [1] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaeme, T. Thio. Nature. 382, 54. (1996)

    [2] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley. Nature. 318, 162. (1985)

    [3] W. Krastschmer, L.D. Lamb, K. Fortiropoulos, D.R. Huffman. Nature. 347, 354. (1990)

    [4] S. Iijima. Nature. 354, 56. (1991)

    [5] M.J. Yacaman, M.M. Yoshida, L. Rendon, J.G. Santiesteban. Appl. Phys. Lett. 62, 202. (1993)

    [6] M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, A. Sarkar. Carbon. 33, 873. (1995)

    [7] T.H. WTBZHenning, F.Salama. Science. 282, 2204. (1998)

    [8] H. Hiura, T.W. Ebbesen, J. Fujita, K. Tanigaki, T. Takada. Nature. 367, 148. (1994)

    [9] 美國Rice大學R. E. Smalley研究小組網上圖片http://cnst.rice.edu/pics.html

    [10] V.H. Crespi. Phys Rev B. 58, 12671. (1998)

    [11] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund. Science of Fullerences and Carbon Nanotubes. San Diego:Academic Press (1996)

    [12] E. Dujardin, T.W. Ebbesen , H. Hiura, K. Tanigaki. Science. 265, 1850. (1994)

    [13] D. Ugarte, T. Stockli, J. Bonard, et al. In : K. Tanaka, T. Yamabe, K. Fukui, ed, The Science and Technology of Carbon nanotubes. Elseier Science, 136 (1999)

    [14] P.M. Ajayan, S. Iijima. Nature. 361, 333. (1993)

    [15] http://www.chem.ox.ac.uk

    [16] S.C. Tsang, Y.K. Chen, P.J.F Harris, M.L.H. Green. Nature. 372, 159. (1994)

    [17] R.F. Curl, R.E. Smalley. Science. 242, 1017. (1988)

    [18] R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra, S. Subramoney. Science. 259, 346. (1993)

    [19] Y. Saito, T. Yoshikawa, M. Okuda. N. Fujimoto, S. Yamamuro, K. Wakoh, K. Sumiyama, K. Suzuki, A. Kasuya, Y. Nishina. Chem. Phys. Lett. 212, 379. (1993)

    [20] Y. Saito, T. Yoshikawa, M. Okuda, N. Fujimoto, K. Sumiyama, K. Suzuki, A. Kasuya, Y. Nishina. J. Phy. Chem. Solids. 54, 1849. (1993)

    [21] V.P. David, J.J. Host, M.H. Teng, B.E.J. Hwang, D.L. Johnson, T.O. Mason, J.R. Weertman . Nature. 374, 602. (1995)

    [22] J. Jiao, S. Seraphin, X. Wang, J.C. Withers. J. Appl. Phys. 80, 103 (1996)

    [23] L. Langer, V. Bayot, E. Grivei, J.P. Issi, J.P. Heremans, C.H. Olk, L. Stockman, C. Van Haesendonck, Y. Bruynseraede. Phys. Rev. Lett. 76, 479 (1996)

    [24] H.J. Dai, E.W. Wong, C.M. Leiber. Science. 272, 523 (1996)

    [25] Y. Miyamoto, S.G. Louie, M.L. Cohen. Phys. Rev. Lett. 76, 2121 (1996)

    [26] P.J. Lin-Chung, A.K. Rajagopal, Phys. Rev. B. 49, 8454 (1994)

    [27] Y.P. Zhao, B.Q. Wei, P.M. Ajayan, G. Ramanath, T.M. Lu, G.C. Wang. Phys. Rev B. 64, 201402 (2001)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE