研究生: |
陶仲威 Tao, Chung-Wei |
---|---|
論文名稱: |
Achieving sub-wavelength imaging through a flat hyperlens composed of silver nanowires in a modified anodic aluminum oxide (AAO) template |
指導教授: |
嚴大任
Yen, Ta-Jen |
口試委員: |
闕郁倫
張存續 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 陽極氧化鋁 、雙曲透鏡 |
外文關鍵詞: | anodic aluminum oxide, hyperlens |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於傳統光學而言,其成像的品質會受到繞射極限的影響,進而導致影像的解析度僅能達到約入射波長的一半,此限制源自於消逝波具有衰減特性而無法傳遞至遠場。針對繞射極限,科學家提出數種結構試圖解決此問題,超級透鏡首先被提出,其利用金屬薄膜產生的表面電漿子將消逝波的訊號加以放大藉以得到極佳的解析度,但此現象僅能在很窄的操作頻率中達到;另一方面,雙曲透鏡亦經科學家提出,此結構具有雙曲線型之等頻率曲線故能夠將消逝波轉換成傳遞波,然而此結構的彎曲形貌導致其無法被廣泛使用在各種應用中。
在本論文中,我們提出一個由銀奈米線及陽極氧化鋁基板所構成的平面型雙曲透鏡,預期此結構能夠展現出超越繞射極限的影像解析度。此平面型雙曲透鏡沿著不同軸向具有異號的介電常數,此特性對應到一個雙曲線型之等頻率曲線,使得其能夠將消逝波轉換成傳遞波。此外,我們亦採取了理論計算來設計此結構,藉由控制銀的體積佔有比率,我們能夠調控任意操作頻率下的等效介電常數。為了驗證理論計算之結果,次波長成像系統之模擬結果亦在本論文中呈現,模擬中所採用的入射波長為365奈米、532奈米以及633奈米。
為了實現此結構,我們將傳統的陽極氧化鋁製程加以修改而製備出毋需依靠支撐物之氧化鋁基板,此基板厚度約10微米且具有直徑約60奈米之奈米孔洞。利用電鍍製程,銀奈米線可以生長於氧化鋁基板的奈米孔洞中,形成此平面型雙曲透鏡。接著我們利用聚焦離子束蝕刻兩條狹縫,其間距設為120至400奈米,利用近場掃描式光學顯微鏡對兩條狹縫之量測,其結果顯示出次波長成像可以藉由提出的平面型雙曲透鏡而達成,影像的解析度可以到達入射波長的三分之一,此成果對於次波長之黃光微影系統的發展有相當程度之助益。
1. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Optics express 14, 8247-8256 (2006).
2. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Optics express 15, 15886-15891 (2007).
3. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686-1686 (2007).
4. J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters 85, 3966-3969 (2000).
5. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Applied Physics Letters 84, 2244-2246 (2004).
6. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
7. D. O. S. Melville, and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Optics express 13, 2127-2134 (2005).
8. Y. M. Liu, G. Bartal, and X. Zhang, "All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region," Optics express 16, 15439-15448 (2008).
9. Z. W. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Applied Physics Letters 83, 5184-5186 (2003).
10. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595-1595 (2006).
11. X. Zhang, and Z. W. Liu, "Superlenses to overcome the diffraction limit," Nat Mater 7, 435-441 (2008).
12. Z. Liu, Z. Liang, X. Jiang, X. Hu, X. Li, and J. Zi, "Hyper-interface, the bridge between radiative wave and evanescent wave," Applied Physics Letters 96, 113507 (2010).
13. A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, "Graphene hyperlens for terahertz radiation," Physical Review B 86, 121108 (2012).
14. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, "Retrieving effective parameters for metamaterials at oblique incidence," Physical Review B 77, 195328 (2008).
15. D. Lu, and Z. Liu, "Hyperlenses and metalenses for far-field super-resolution imaging," Nature communications 3, 1205 (2012).
16. J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, and X. A. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nature communications 1, 143(2010).
17. D. D. Li, D. H. Zhang, C. C. Yan, and Y. K. Wang, "Two-dimensional subwavelength imaging from a hemispherical hyperlens," Appl Optics 50, G86-G90 (2011).
18. P. A. Belov, "Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis," Microw Opt Techn Let 37, 259-263 (2003).
19. D. R. Smith, P. Kolinko, and D. Schurig, "Negative refraction in indefinite media," J Opt Soc Am B 21, 1032-1043 (2004).
20. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat Mater 6, 946-950 (2007).
21. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science 321, 930-930 (2008).
22. A. Fang, T. Koschny, and C. M. Soukoulis, "Optical anisotropic metamaterials: Negative refraction and focusing," Physical Review B 79, 245127 (2009).
23. K. V. Sreekanth, A. De Luca, and G. Strangi, "Negative refraction in graphene-based hyperbolic metamaterials," Applied Physics Letters 103, 023107(2013).
24. K. G. Balmain, A. A. E. Luttgen, and P. C. Kremer, "Resonance Cone Formation, Reflection, Refraction, and Focusing in a Planar Anisotropic Metamaterial," Ieee Antenn Wirel Pr 1, 146-149 (2002).
25. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, "Hyperbolic metamaterials," Nature Photonics 7, 948-957 (2013).
26. J. B. Sun, J. Zhou, B. Li, and F. Y. Kang, "Indefinite permittivity and negative refraction in natural material: Graphite," Applied Physics Letters 98, 101901 (2011).
27. G. Pawlik, K. Tarnowski, W. Walasik, A. C. Mitus, and I. C. Khoo, "Liquid crystal hyperbolic metamaterial for wide-angle negative-positive refraction and reflection," Opt Lett 39, 1744-1747 (2014).
28. Z. Liu, Z. X. Liang, X. Y. Jiang, X. H. Hu, X. Li, and J. Zi, "Hyper-interface, the bridge between radiative wave and evanescent wave," Applied Physics Letters 96, 113507 (2010).
29. J. Yao, Y. Wang, K. T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y. L. Wang, and X. Zhang, "Design, fabrication and characterization of indefinite metamaterials of nanowires," Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 369, 3434-3446 (2011).
30. M. Wang, and N. Pan, "Predictions of effective physical properties of complex multiphase materials," Mat Sci Eng R 63, 1-30 (2008).
31. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Applied Physics Letters 89, 261102 (2006).
32. P. B. Johnson, and R. W. Christy, "Optical Constants of Noble Metals," Physical Review B 6, 4370-4379 (1972).
33. J. Yao, K. T. Tsai, Y. N. Wang, Z. W. Liu, G. Bartal, Y. L. Wang, and X. Zhang, "Imaging visible light using anisotropic metamaterial slab lens," Optics express 17, 22380-22385 (2009).
34. H. Wei, S. P. Zhang, X. R. Tian, and H. X. Xu, "Highly tunable propagating surface plasmons on supported silver nanowires," P Natl Acad Sci USA 110, 4494-4499 (2013).
35. N. Engheta, A. Salandrino, and A. Alu, "Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors," Physical Review Letters 95, 095504 (2005).
36. H. Masuda, and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a 2-Step Replication of Honeycomb Structures of Anodic Alumina," Science 268, 1466-1468 (1995).
37. F. Y. Li, L. Zhang, and R. M. Metzger, "On the growth of highly ordered pores in anodized aluminum oxide," Chemistry of Materials 10, 2470-2480 (1998).
38. Y. Lei, W. P. Cai, and G. Wilde, "Highly ordered nanostructures with tunable size, shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks," Progress in Materials Science 52, 465-539 (2007).
39. X. Michalet, and S. Weiss, "Using photon statistics to boost microscopy resolution," P Natl Acad Sci USA 103, 4797-4798 (2006).