簡易檢索 / 詳目顯示

研究生: 游家慶
James C.-C Yu
論文名稱: 即時裝置排程系統
Just-in-time Device Scheduler
指導教授: 黃泰一
Tai-Yi Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 34
中文關鍵詞: 低耗能即時系統排程系統輸入輸出裝置
外文關鍵詞: Low power, Real-time system, Scheduler, I/O device
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分析輸入輸出裝置消耗非必要能源的原因並且提出即時裝置排程系統(簡
    稱JDS)幫助裝置將非必要性耗能降到最低。JDS 為在線的裝置排程演算法,其包
    含Iterative slack allocator 與Dynamic handler 兩部分。Iterative slack
    allocator 將slack 分配給每個工作以降低錯誤預期工作起始時間而造成的非必
    要裝置耗能,Dynamic handler 在系統運行的時候動態調整每個工作的slack 以
    消除unnecessary slack 所造成的非必要裝置耗能。JDS 的比較對象為目前最先
    進的在線裝置排程演算法,簡稱EEDS。實驗結果顯示JDS 最多比EEDS 節省33%
    的裝置總耗電量,其中使用JDS 的實驗裝置因閒置而造成的耗電量比EEDS 的耗
    電量減少了72%。


    In this paper, we analyze the issues that cause a device to consume more energy
    than it really needs and propose Just-in-time Device Scheduler (JDS), an online
    device scheduling algorithm, to address the issues. JDS consists of two major
    components: Iterative slack allocator and Dynamic handler. Iterative slack
    allocator statically assign slack to the tasks to reduce the energy consumed by
    device due to misprediction of job execution. Dynamic handler fine-tunes slack for
    the jobs in runqueue at run-time to reduce the energy waste incurred by unnecessary
    slack. JDS is compared with EEDS, the state-of-the-art online device scheduling
    algorithm, in evaluation. The experimental results show that JDS saves up to 33%
    of device energy consumption and 72% of device idle energy compared to EEDS.

    1 Introduction 5 2 Related Works 8 3 System Model 10 3.1 Task Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 I/O Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 The JDS Algorithm 12 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2 Iterative Slack Allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3 Dynamic handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3.1 Slack reclamation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3.2 Slack redistribution . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3.3 Example Follow Up . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 Weakness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.5 Schedulability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 Evaluation 23 5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Average energy consumption at different CPU utilization . . . . . . . . . 24 5.3 Average energy consumption at different CPU utilization . . . . . . . . . 26 5.4 Average energy consumption at different device sharing level . . . . . . . 28 6 Conclusion 30 7 Future Work 31

    [1] Ohmic instruments inc. http://www.figaro.co.jp/en/pdf/
    825ProductInfo1104.pdf, 2004.
    [2] Rixen technology inc. http://www.rixen.com.tw/product/trh300_e.htm, 2005.
    [3] Axetris microsystems inc. http://www.axetris.com/downloads/f25irsstandard.
    pdf, 2006.
    [4] Applied microsystems ltd. http://www.appliedmicrosystems.com/Admin/
    Products/uploadedFiles/Tech%20Specs%20Smart%20Sensors.pdf, 2007.
    [5] T. Alexandropoulos, S. Boutas, V. Loumos, and E. Kayafas. Real-time change
    detection for surveillance in public transportation. In AVSS ’05: Proceedings of
    IEEE Conference on Advanced Video and Signal Based Surveillance. IEEE Press,
    2005.
    [6] L. M. Bergasa, J. Nuevo, M. A. Sotelo, R. Barea, and M. E. Lopez. Real-time system
    for monitoring driver vigilance. IEEE Transactions on Intelligent Transportation
    Systems, 7(1):63–77, MARCH 2006.
    [7] H. Cheng and S. Goddard. Online energy-aware i/o device scheduling for hard real-
    time systems. In DATE ’06: Proceedings of the conference on Design, automation
    and test in Europe, pages 1055–1060, 3001 Leuven, Belgium, Belgium, 2006. Euro-
    pean Design and Automation Association.
    [8] C. Im, S. Ha, and H. Kim. Dynamic voltage scheduling with buffers in low-power
    multimedia applications. ACM Transactions on Embedded Computing Systems,
    3(4):686–705, November 2004.
    [9] R. Jejurikar and R. K. Gupta. Dynamic voltage scaling for systemwide energy
    minimization in real-time embedded systems. In ISLPED ’04: Proceedings of International Symposium on Low Power Electronics and Design, pages 78–81. ACM
    Press, 2004.
    [10] I. A. Khatib, D. Bertozzi, F. Poletti, L. Benini, A. Jantsch, M. Bechara, H. Khalifeh,
    M. Hajjar, R. Nabiev, and S. Jonsson. Mpsoc ecg biochip: a multiprocessor system-
    on-chip for real-time human heart monitoring and analysis. In CF ’06: Proceedings
    of the 3rd conference on Computing frontiers, pages 21–28. ACM Press, 2006.
    [11] M. Kim and S. Ha. Hybrid run-time power management technique for real-time
    embedded system with voltage scalable processor. In LCTES ’01: Proceedings of
    the ACM SIGPLAN Workshop on Languages, Compilers and Tools for Embedded
    Systems, pages 11–19. ACM Press, 2001.
    [12] W. Kim, D. Shin, H.-S. Yun, J. Kim, and S. L. Min. Performance comparison of
    dynamic voltage scaling algorithms for hard real-time systems. In RTAS ’02: Pro-
    ceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications
    Symposium (RTAS’02), pages 219–228. IEEE Computer Society, 2002.
    [13] Y. H. Lu, L. Benini, and G. D. Micheli. Low power task scheduling for multiple
    devices. In CODES ’00: Proceedings of the 8th International Workshop on Hard-
    ware/Software Codesign, pages 39–43. ACM Press, 2000.
    [14] D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and W. J. Kaiser. The low power
    energy aware processing (leap)embedded networked sensor system. In IPSN ’06:
    Proceedings of the 5th International Conference on Information Processing in Sensor
    Networks, pages 449–457. ACM Press, 2006.
    [15] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embed-
    ded operating systems. In SOSP ’01: Proceedings of the 18th ACM Symposium on
    Operating Systems Principles, pages 89–102. ACM Press, 2001.
    [16] A. Seth. http://www.ieer.org/ensec/no-1/glbnrg.html.
    [17] V. Swaminathan and K. Chakrabarty. Energy-conscious, deterministic I/O device
    scheduling in hard real-time systems. IEEE Transactions on Computer-Aided Design
    of Integrated Circuits and Systems, 22(7):847–858, July 2003.
    [18] V. Swaminathan and K. Chakrabarty. Pruning-based, energy-optimal, deterministic
    I/O device scheduling for hard real-time systems. ACM Transactions on Embedded
    Computing Systems, 4(1):141–167, February 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE