研究生: |
游家慶 James C.-C Yu |
---|---|
論文名稱: |
即時裝置排程系統 Just-in-time Device Scheduler |
指導教授: |
黃泰一
Tai-Yi Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵詞: | 低耗能 、即時系統 、排程系統 、輸入輸出裝置 |
外文關鍵詞: | Low power, Real-time system, Scheduler, I/O device |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分析輸入輸出裝置消耗非必要能源的原因並且提出即時裝置排程系統(簡
稱JDS)幫助裝置將非必要性耗能降到最低。JDS 為在線的裝置排程演算法,其包
含Iterative slack allocator 與Dynamic handler 兩部分。Iterative slack
allocator 將slack 分配給每個工作以降低錯誤預期工作起始時間而造成的非必
要裝置耗能,Dynamic handler 在系統運行的時候動態調整每個工作的slack 以
消除unnecessary slack 所造成的非必要裝置耗能。JDS 的比較對象為目前最先
進的在線裝置排程演算法,簡稱EEDS。實驗結果顯示JDS 最多比EEDS 節省33%
的裝置總耗電量,其中使用JDS 的實驗裝置因閒置而造成的耗電量比EEDS 的耗
電量減少了72%。
In this paper, we analyze the issues that cause a device to consume more energy
than it really needs and propose Just-in-time Device Scheduler (JDS), an online
device scheduling algorithm, to address the issues. JDS consists of two major
components: Iterative slack allocator and Dynamic handler. Iterative slack
allocator statically assign slack to the tasks to reduce the energy consumed by
device due to misprediction of job execution. Dynamic handler fine-tunes slack for
the jobs in runqueue at run-time to reduce the energy waste incurred by unnecessary
slack. JDS is compared with EEDS, the state-of-the-art online device scheduling
algorithm, in evaluation. The experimental results show that JDS saves up to 33%
of device energy consumption and 72% of device idle energy compared to EEDS.
[1] Ohmic instruments inc. http://www.figaro.co.jp/en/pdf/
825ProductInfo1104.pdf, 2004.
[2] Rixen technology inc. http://www.rixen.com.tw/product/trh300_e.htm, 2005.
[3] Axetris microsystems inc. http://www.axetris.com/downloads/f25irsstandard.
pdf, 2006.
[4] Applied microsystems ltd. http://www.appliedmicrosystems.com/Admin/
Products/uploadedFiles/Tech%20Specs%20Smart%20Sensors.pdf, 2007.
[5] T. Alexandropoulos, S. Boutas, V. Loumos, and E. Kayafas. Real-time change
detection for surveillance in public transportation. In AVSS ’05: Proceedings of
IEEE Conference on Advanced Video and Signal Based Surveillance. IEEE Press,
2005.
[6] L. M. Bergasa, J. Nuevo, M. A. Sotelo, R. Barea, and M. E. Lopez. Real-time system
for monitoring driver vigilance. IEEE Transactions on Intelligent Transportation
Systems, 7(1):63–77, MARCH 2006.
[7] H. Cheng and S. Goddard. Online energy-aware i/o device scheduling for hard real-
time systems. In DATE ’06: Proceedings of the conference on Design, automation
and test in Europe, pages 1055–1060, 3001 Leuven, Belgium, Belgium, 2006. Euro-
pean Design and Automation Association.
[8] C. Im, S. Ha, and H. Kim. Dynamic voltage scheduling with buffers in low-power
multimedia applications. ACM Transactions on Embedded Computing Systems,
3(4):686–705, November 2004.
[9] R. Jejurikar and R. K. Gupta. Dynamic voltage scaling for systemwide energy
minimization in real-time embedded systems. In ISLPED ’04: Proceedings of International Symposium on Low Power Electronics and Design, pages 78–81. ACM
Press, 2004.
[10] I. A. Khatib, D. Bertozzi, F. Poletti, L. Benini, A. Jantsch, M. Bechara, H. Khalifeh,
M. Hajjar, R. Nabiev, and S. Jonsson. Mpsoc ecg biochip: a multiprocessor system-
on-chip for real-time human heart monitoring and analysis. In CF ’06: Proceedings
of the 3rd conference on Computing frontiers, pages 21–28. ACM Press, 2006.
[11] M. Kim and S. Ha. Hybrid run-time power management technique for real-time
embedded system with voltage scalable processor. In LCTES ’01: Proceedings of
the ACM SIGPLAN Workshop on Languages, Compilers and Tools for Embedded
Systems, pages 11–19. ACM Press, 2001.
[12] W. Kim, D. Shin, H.-S. Yun, J. Kim, and S. L. Min. Performance comparison of
dynamic voltage scaling algorithms for hard real-time systems. In RTAS ’02: Pro-
ceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’02), pages 219–228. IEEE Computer Society, 2002.
[13] Y. H. Lu, L. Benini, and G. D. Micheli. Low power task scheduling for multiple
devices. In CODES ’00: Proceedings of the 8th International Workshop on Hard-
ware/Software Codesign, pages 39–43. ACM Press, 2000.
[14] D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and W. J. Kaiser. The low power
energy aware processing (leap)embedded networked sensor system. In IPSN ’06:
Proceedings of the 5th International Conference on Information Processing in Sensor
Networks, pages 449–457. ACM Press, 2006.
[15] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embed-
ded operating systems. In SOSP ’01: Proceedings of the 18th ACM Symposium on
Operating Systems Principles, pages 89–102. ACM Press, 2001.
[16] A. Seth. http://www.ieer.org/ensec/no-1/glbnrg.html.
[17] V. Swaminathan and K. Chakrabarty. Energy-conscious, deterministic I/O device
scheduling in hard real-time systems. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 22(7):847–858, July 2003.
[18] V. Swaminathan and K. Chakrabarty. Pruning-based, energy-optimal, deterministic
I/O device scheduling for hard real-time systems. ACM Transactions on Embedded
Computing Systems, 4(1):141–167, February 2005.