簡易檢索 / 詳目顯示

研究生: 方仁武
RenWu Fang
論文名稱: 交叉耦合控制器設計與其在直接驅動機械臂之應用
Cross-Coupling Controller Design and Its Application to a Direct-Drive Robot
指導教授: 陳建祥
Chen, Jian-Shiang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2002
畢業學年度: 91
語文別: 英文
論文頁數: 105
中文關鍵詞: 交叉耦合控制輪廓誤差直接驅動機械臂超音波馬達
外文關鍵詞: Cross-Coupling Control, Contouring Error, Direct-Drive Robot, Ultrasonic Motor
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出兩種依據不同設計想法所推導之直接驅動機械臂交叉耦合控制法則以期能有效改善輪廓精確度。對於直接驅動機械臂而言,考量其中存在著無法忽略的模型不確定性與外在干擾,因此本文所提出之交叉耦合控制器其目的乃在希望系統即使面對相當程度的模型不確定性與外在干擾,依舊使其維持良好的輪廓精確度並確保其穩定性。
    文中,首先提出一 交叉耦合控制器;由於從耦合與未耦合系統輪廓誤差之關係可將交叉耦合控制設計轉換成設計一線性參數時變系統之等效迴授控制,因此採用 法則設計一交叉耦合控制器以期在面對時變之交叉耦合增益與系統之參數不確定下能同時達成改善輪廓精確度與內部穩定之目的。

    其次,有別於傳統交叉耦合控制器即時計算出輪廓誤差並據此迴授至各軸以降低輪廓誤差之方法,本文提出一以李阿普諾夫方法所推導而得的交叉耦合控制器,此一法則旨在直接協調各軸之運動以降低所追蹤軌跡於法線方向之誤差量,利用李阿普諾夫遞推方法與遞迴補償技巧,此一交叉耦合控制器可用於一般之三維輪廓追蹤以改善當系統存在無法忽略的模型不確定性與外在干擾甚或重力效應下之輪廓精確度。此外,此一多輸入多輸出非線性時變系統之局部穩定亦可同時確保。

    為進一步探究各法則之可行性,本文中針對一雙軸水平機械臂與一三軸空間機械臂為實驗對象做驗證。實驗結果顯示了本文所提出之交叉耦合控制法則在不同之輪廓追蹤命令、負載條件及機械臂組態條件下皆能獲得較佳之輪廓精確度。


    In this dissertation, two novel cross-coupling control (CCC) schemes derived from different approach are proposed to enhance the contouring accuracy of direct-drive robots (DDR). Considering that DDR abound in model uncertainties and external disturbances, the main purpose of the proposed CCC schemes is to achieve excellent contouring accuracy and guarantee stability simultaneously in the presence of the model uncertainties and external disturbances.
    Firstly, a CCC using scheme is proposed; from the relationship between the coupled and uncoupled system, the design of the compensator in the CCC scheme can be transformed onto an equivalent feedback control design problem which has time-varying (TV) parameters in. scheme is adopted to design the cross-coupling (CC) controller to provide excellent contouring accuracy and achieve internal stability even when the CC gains and the model parameters are varying.

    Secondly, instead of directly calculating the instantaneous contouring error and feeding it to coordinate axes, a novel Lyapunov-based CCC scheme is proposed to enhance contouring error by reducing the error normal to the contour. Based on Lyapunov backstepping method and the recursive updating technique, the proposed control scheme can enhance the contouring accuracy for three-dimensional contouring in spite of considerable model uncertainties, disturbances, and even gravitational effects. Furthermore, the proposed CCC design, which is a typical MIMO nonlinear TV system, can be verified as locally stable.

    Lastly, a two-link and a three-link anthropomorphic ultrasonic motor (USM) serial DDR systems are established to investigate the feasibility. Experimental results validated the efficacy of the proposed CCC schemes and the results showed that the proposed CCC schemes could maintain excellent contouring accuracy under various operating conditions such as contouring commands, payload configurations, and robotic configurations.

    Abstract...............................................i Table of Contents......................................ii List of Tables.........................................v List of Figures........................................vi List of Acronyms.......................................x Nomenclature...........................................xi Chapter1 Introduction..................................1 1.1 Motivations and Objectives..................1 1.2 Literature Survey...........................3 1.2.1 The Cross-Coupling Control Scheme.......3 1.2.2 Control Scheme..........................5 1.2.3 Direct-Drive Robot......................5 1.3 Contributions of the Dissertation...........6 1.4 Organization of the Dissertation............7 Chapter2 The Cross-Coupling Control Scheme.............11 2.1 Introduction to Cross-Coupling Control......11 2.2 Cross-Coupling Control of A Two-Link Robotic Manipulator.................................12 2.2.1 Computation of the Contouring Error.....12 2.2.2 The Cross-Coupling Control Structures...15 2.3 Problem Statement...........................17 Chapter3 Design of A Cross-Coupling Controller Using H-Infinity Scheme.............................20 3.1 Revisit of Design...........................20 3.2 Cross-Coupling Control......................22 3.3 Stability Analysis..........................24 3.4 Summary.....................................27 Chapter4 Design of A Robust Cross-Coupling Controller Based on Lyapunov Theory......................29 4.1 Introduction................................29 4.2 Lyapunov-Based Cross-Coupling Control.......30 4.2.1 Selection of a Lyapunov function........30 4.2.2 Lyapunov Backstepping Method............31 4.2.3 Recursive Updating Design...............34 4.3 Summary.....................................36 Chapter5 Experimental Setup of a USM Direct-Drive Robotic System................................37 5.1 Introduction................................37 5.2 Basic Principle and Dynamic Characteristics of Ultrasonic Motors........................38 5.2.1 Basic Principle of Ultrasonic Motors....38 5.2.2 Dynamic Characteristics of Ultrasonic Motors..................................39 5.3 Experimental Setup of the USM Direct-Drive Robotic System under Study..................41 5.4 Identification of the USM Direct-Drive Robotic Axes................................44 5.5 Summary.....................................46 Chapter6 Experimental Validation.......................60 6.1 Introduction................................60 6.2 The Cross-Coupling Control Scheme of the Two-Link Planar Robotic Manipulator.........60 6.2.1 The Cross-Coupling Controller Design....60 6.2.2 Experimental Results and Discussions....62 6.3 The Lyapunov-Based Cross-Coupling Control Scheme of the Two-Link Robotic Manipulator..65 6.3.1 The Lyapunov-Based Cross-Coupling Controller Design.......................65 6.3.2 Experimental Results and Discussions....67 6.4 The Lyapunov-Based Cross-Coupling Control Scheme of the Multi-Link Robotic Manipulator Under Gravity...............................69 6.4.1 The Lyapunov-Based Cross-Coupling Controller Design.......................69 6.4.2 Experimental Results and Discussions....70 6.5 Summary.....................................73 Chapter7 Concluding Remarks and Recommendations for Future Work...................................91 7.1 Concluding Remarks..........................91 7.2 Recommendations for Future Work.............92 Appendix...............................................94 References.............................................97 Vita...................................................104 Publications...........................................105

    [1] Y. Koren, “Cross-coupling biaxial computer control for manufacturing system,” ASME J. Dyn. Syst., Measurement, Contr., vol. 102, pp. 265-272, 1980.
    [2] P. K. Kulkami and K. Srinivasan, “Optimal contouring control of multi-axial feed drive servomechanisms,” ASME J. Eng. Ind., vol. 111, pp. 140-148, 1989.
    [3] H. Y. Chuang and C. H. Liu, “Cross-coupled adaptive federate control for multiaxis machine tools,” ASME J. Dyn. Syst., Measurement, Contr., vol. 113, pp. 451-457, 1991.
    [4] H. Y. Chuang and C. H. Liu, “A model-referenced adaptive control strategy for improving contour accuracy of multiaxis machine tools,” IEEE Trans. Ind. Appl., vol. 28, pp. 221-227, 1992.
    [5] Y. Koren and C. C. Lo, “Variable gain cross-coupling controller for contouring,” Ann. CIRP, vol. 40, no. 1, pp. 371-374, 1991.
    [6] Y. Koren and C. C. Lo, “Advanced controllers for feed drives,” Ann. CIRP, vol. 40, no. 2, pp. 689-698, 1992.
    [7] Y. Koren and C. C. Lo, “Evaluation of servo-controllers for machine tools,” in Proc. 1992 Amer. Contr. Conf., June 1992, pp. 370-374.
    [8] Z. M. Yeh, Y. S. Tarng, and Y. S. Lin, “Cross-coupled fuzzy logic control for biaxial servomechanisms,” in Proc. 5th IEEE Conf. on Fuzzy Systems, 1996, vol. 2, pp. 1184-1190.
    [9] Z. M. Yeh, “A cross-coupled bistage fuzzy controller for biaxis servomechanism control,” Fuzzy Sets and Systems, vol. 97, pp. 265-275, 1998.
    [10] G. Chiu, “Contour tracking of machine tool feed drive systems,” in Proc. 1998 Amer. Contr. Conf., 1998, pp. 3833-3837.
    [11] M. Tomizuka, J. S. Hu, T. C. Chiu, and T. Kamano, “Synchronization of 2 motion control axes under adaptive feedforward control,” ASME J. Dyn. Syst., Measurement, Contr., vol. 114, pp. 196-203, 1992.
    [12] R. J. McNab and T. C. Tsao, “Receding time horizon linear quadratic optimal control for multiaxis contour tracking motion control,” ASME J. Dyn. Syst., Measurement, Contr., vol. 122, pp. 375-381, 2000.
    [13] S. S. Yeh and P. L. Hsu, “Theory and applications of the robust cross-coupled control design,” ASME J. Dyn. Syst., Measurement, Contr., vol. 121, pp. 524-530, 1999.
    [14] T. C. Chiu and M. Tomizuka, “Coordinated position control of multi-axis mechanical systems,” ASME J. Dyn. Syst., Measurement, Contr., vol. 120, pp. 389-393, 1998.
    [15] C. C. Lo, “Three-axis contouring control based on a trajectory coordinate basis,” JSME Int. J. Series C- Mech. Syst. Mach. Elements Manuf., vol. 41, no. 2, pp. 242-247, 1998.
    [16] C. C. Lo and C. Y. Chung, “Tangential-contouring controller for biaxial motion control,” ASME J. Dyn. Syst., Measurement, Contr., vol. 121, pp. 126-129, 1999.
    [17] T. C. Chiu and M. Tomizuka, “Contouring control of machine tool feed drive systems: a task coordinate frame approach,” IEEE Trans. Contr. Syst. Technol., vol. 9, pp. 130-139, 2001.
    [18] S. S. Yeh and P. L. Hsu, “Estimation of the contouring error vector for the cross-coupled control design,” IEEE/ASME Trans. Mechatron., vol. 7, no. 1, pp. 44-51, 2002.
    [19] K. Glover and J. Doyle, “State-space formulate for all stabilizing controllers that satisfy an norm bound and relations to risk sensitivity,” Syst. and Contr. Letters, vol. 11, pp. 167-172, 1988.
    [20] Y. Nesterov and A. Nemirovski, Interior point polynomial methods in convex programming theory and applications, SIAM, Philadelphia, 1994.
    [21] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to control,” Int. J. of Robu. and Nonlin. Contr., vol. 4, pp. 421-448, 1994.
    [22] T. Iwasaki and R. E. Skelton, “All controllers for the general control problem: LMI existence conditions and state space formulas,” Automatica, vol. 30, pp. 1307-1317, 1994.
    [23] P. Gahinet, “Explicit controller formulas for LMI-based synthesis,” Automatica, vol. 32, pp. 1007-1014, 1996.
    [24] J. C. Doyle, “Structured uncertainty in control system design,” in Proc. IEEE Conf. on Decision and Control, Ft. Lauderdele, USA, 1985.
    [25] A. Packard and J. C. Doyle, “Complex structured singular value,” Automatica, vol. 29, pp. 71-109, 1993.
    [26] R. D’Andrea, “Generalized synthesis,” IEEE Trans. Automat. Contr., vol. 44, pp. 1145-1156, 1999.
    [27] L. H. Keel and S. P. Bhattacharyya, “Robust, fragile, or optimal?,” IEEE Trans. Automat. Contr., vol. 42, pp. 1098-1105, 1997.
    [28] L. Qiu and E. J. Davison, “Feedback stability under simultaneous gap metric uncertainties in plant and controller,” Syst. and Contr. Letters, vol. 18, pp. 9-22, 1992.
    [29] P. Dorato, “Non-fragile controller design: an overview,” in Proc. 1998 Amer. Contr. Conf., 1998, pp. 2829-2831.
    [30] M. M. Pertti, “Comments on robust, fragile, or optimal?,” IEEE Trans. Automat. Contr., vol. 43, pp. 1265-1267, 1998.
    [31] Z. Duan, L. Huang, and L. Wang, “Robustness analysis and synthesis of SISO systems under both plant and controller perturbations,” Syst. and Contr. Letters, vol. 42, pp. 201-216, 2001.
    [32] H. Asada and T. Kanade, “Design of direct-drive mechanical arms,” ASME J. Vibra., Acous., Stress, and Reliab. in design, vol. 105, no. 3, pp. 312-316, 1983.
    [33] H. Asada and K. Youcef-Toumi, “Analysis and design of semi-direct-drive robot arms,” in Proc. 1983 Amer. Contr. Conf., 1983, pp. 757-764.
    [34] H. Asada and K. Youcef-Toumi, “Analysis and design of semi-direct-drive arm with a five-bar link parallel drive mechanism,” ASME J. Dyn. Syst., Measurement, Contr., vol. 106, no. 3, pp. 225-230, 1984.
    [35] S. Kim, Design, Analysis, and Control of a Statically Balanced Direct-Drive Manipulator, Ph.D. Dissertation, Dept. of Mechanical Engineering, University of Minnesota, 1988.
    [36] T. Kanade and D. Schmitz, Development of CMU Direct-Drive ARM II, Technical Report, Robotics Institute, Carnegie-Mellon University, 1985.
    [37] H. Asada and K. Youcef-Toumi, Direct-Drive Robot, MIT Press, London, 1987.
    [38] K. Erbatur, O. Kaynak, A. Sabanovic, and I. Rudas, “Fuzzy adaptive sliding mode control of a direct drive robot,” Robot. and Auton. Syst., vol. 19, no. 2, pp. 215-227, 1996.
    [39] A. Jaritz and M. W. Spong, “An experimental comparison of robust control algorithms on a direct drive manipulator,” IEEE Trans. Contr. Syst. Technol., vol. 4, no. 6, pp. 627-640, 1996.
    [40] B. S. Kang, S. H. Kim, Y. K. Kwak, and C. C. Smith, “Robust tracking control of a direct drive robot,” ASME J. Dyn. Syst., Measurement, Contr., vol. 121, pp. 261-269, 1999.
    [41] J. M. Maciejowski, Multivariable Feedback Design, Addison-Wesley, 1989.
    [42] M. G. Safonov and R. Y. Chiang, Robust-control toolbox version 2.0b, Math Works, Inc. South Natick, MA, 1994.
    [43] M. Morari and E. Zafiriou, Robust Process Control, Prentice-Hall, Englewood Cliff, NJ, 1989.
    [44] K. S. Tsaklis and P. A. Ioannou, Linear Time-varying Systems, Prentice-Hall, Inc, 1993.
    [45] P. V. Kokotovic, “The joy of feedback: nonlinear and adaptive,” IEEE Contr. Syst. Mag., vol. 12, no. 3, pp. 7-17, 1992.
    [46] K. Erbatur, O. Kaynak, and A. Sabanovic, “A study on robustness property of sliding-mode controller: a novel design and experimental investigations, IEEE Trans. Ind. Electr., vol. 46, no. 5, pp. 1012-1018, 1999.
    [47] S. Furuya, T. Maruhashi, Y. Izuno, and M. Nakaoka, “Load-adaptive frequency tracking control implementation of two-phase resonant inverter for ultrasonic motor,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 542-550, 1992.
    [48] T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors, The Oxford University Press, 1993.
    [49] K. Uchino, “Piezoelectric actuators/ ultrasonic motors- their developments and markets,” in Proc. 9th IEEE Int. Symp. on Applications of Ferroelectrics, 1994, pp. 319-324.
    [50] T. Senjyu, S. Yokoda, H. Miyazato, and K. Uezato, “Speed control of ultrasonic motors by adaptive control with a simplified mathematical model,” IEE Proc. Electr. Power Appl., vol. 145, no. 3, pp. 180-184, 1998.
    [51] Y. Izuno, T. Izumi, H. Yasutsune, E. Hiraki, and M. Nakaoka, “Speed tracking servo control system incorporating traveling-wave-type ultrasonic motor and feasible evaluations,” IEEE Trans. Ind. Applicat., vol. 34, no. 1, pp. 126-132, 1998.
    [52] P. Hagedorn, J. Wallaschek, and W. Konrad, “Traveling wave ultrasonic motors, part II: a numerical method for the flexural vibrations of the stator,” J. Sound and Vibration, vol. 168, no. 1, pp. 115-122, 1993.
    [53] Y. Izuno and M. Nakaoka, “Adaptive control-based high-performance drive system implementation of traveling-wave type ultrasonic motor,” Trans. Inst. Electr. Eng. Jpn., vol. 110-D, no. 11, pp. 1147-1154, 1990.
    [54] R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 174-182, 1988.
    [55] J. H. Chen, “Design and Implementation of a Servo Control Chip for a Triaxial Robot Using Ultrasonic Motors,” Master Thesis, Dept. Power Mechanical Engineering, National Tsing Hua Univ., Hsinchu, Taiwan, ROC, 1999. (in Chinese)
    [56] A. Karasogula and M. K. Sundarshan, “Decentralized variable structure control of robotic manipulator: neural computational algorithms,” in Proc. 29th IEEE Conf. on Decision and Control, Honolulu, Hawaii, 1990, pp. 3258-3259.
    [57] Y. P. Chen and K. S. Yeung, “Sliding mode control of multi-link flexible manipulators,” Int. J. Contr., vol. 54, no. 2, pp. 257-278, 1991.
    [58] D. Enns, Model Reduction for Control System Design, Ph.D. dissertation, Stanford Univ., 1984.
    [59] J. H. Chen, R. W. Fang, and J. S. Chen, A Fuzzy-Inference Cross-Coupling Controller and Its Application to a USM Robot, in Proc 16th National Conf. on Mech. Eng., Hsinchu, ROC, 1999, pp. 219-226.
    [60] F. I. Chen, Applications of the Learning Automata Method in Motion Control, Master Thesis, National Chiao Tung Univ., ROC, 1995.
    [61] A. Albano, “Representation of digitized contours in terms of conic arcs and straight line segments,” Comput. Graphics Image Process, vol. 5, pp. 23-33, 1974.
    [62] H. K. Khalil, Nonlinear Systems, New York, Macmillan, 1992.
    [63] H. H. Rosenbrock, “The stability of linear time-dependent control systems,” Int. J. Electron. Contr., vol. 15, pp. 73-80, 1963.
    [64] C. A. Desoer, “Slowly varying system ,” IEEE Trans. Automat. Contr., vol. 14, pp. 780-781, 1969.
    [65] A. Ilchmann, D. H. Owens, and D. Prätzel-Wolters, “Sufficient conditions for stability of linear time-varying systems,” Syst. Contr. Lett., vol. 9, pp. 157-163, 1987.
    [66] J. M. Krause and K. S. P. Kumar, “An alternative stability analysis frame-work for adaptive control,” Syst. Contr. Lett., vol. 7, pp. 19-24, 1986.
    [67] P. Kokotovic, H. K. Khalil, and J. O’Reilly, “Singular Perturbation Methods in Control: Analysis and Design, London, Academic, 1986.
    [68] W. Kamen, P. P. Khargonegar, and A. Tannenbaum, “Control of slowly-varying systems,” IEEE Trans. Automat. Contr., vol. 34, pp. 1283-1285, 1969.
    [69] F. Amato, G. Celentano, and F. Garofalo, “New sufficient conditions for the stability of slowly varying linear systems,” IEEE Trans. Automat. Contr., vol. 38, pp. 1409-1411, 1993.
    [70] A. Graham, Kronecker Products and Matrix Calculus: with Applications, Chichester, Ellis Horwood, 1981.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE