簡易檢索 / 詳目顯示

研究生: 張舉豪
Chang, Chu-Hao
論文名稱: 綠色模組設計-運用突變粒子群演算法
GREENMODULARIZATION USING MUTATIVE PARTICLE SWARM OPTIMIZATION METHOD
指導教授: 邱銘傳
口試委員: 郭財吉
朱詣尹
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 104
中文關鍵詞: 永續性設計模組設計溫室氣體突變粒子群演算法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今的社會,對於環境的議題越加重視,為了能使新設計的產品能更環保,公司會對產品進行重新設計,使新設計的產品能符合環境的永續性。因此為了能在設計階段就考慮產品的永續性,本研究將探討零組件的運輸、製造程序和組裝方式,並評估上述因子對溫室氣體排放量(Greenhouse Gas, GHG)所造成的影響,再將零組件依材質進行分類並模組化,使模組化的產品更容易進行回收,提升產品的永續性程度,然而為了使產品在進行永續性的過程中能符合經濟性,因此本研究會探討總成本和生產線平衡,所以本研究為了能達成上述目的,利用突變粒子群演算法(Mutative Particle Swarm Optimization)將產品設計成綠色模組和成本模組,綠色模組目標為利用組裝方式和組裝順序求最小化溫室氣體排放量和模組回收性,成本模組則是最小化的總成本,之後研究更改不同的零件材質,比較不同材質對溫室氣體所造成的影響,因此本研究在設計階段就考慮產品的永續性、裝配性、回收性和模組化,所以當產品在正式量產時能快速地上市,並減少重新設計的時間;在回收上則考量到材質相同的放在同個模組內,所以當產品生命週期結束時可以更容易進行回收,而當產品內的零組件多且結構複雜時,可利用產品模組化來進行分群,使產品結構簡單化,減少產品在生產上的混亂;研究提供給設計者綠色模組、成本模組、不同材質模組等多樣的設計方案,使設計者能選擇對公司有幫助的設計方案,最後研究會討論不同的綠色指標對總成本的影響,讓設計者能在成本和永續性上得到較佳的平衡。


    Nowadays,there are more and more legislation concerningwith environmental issues. In order to be more sustainable for the product, the companiesre-design products to reduce the environmental impact. So as to design the sustainable products in the design stage, this study assess the greenhouse gases of the product which is calculated by the components of transportation, manufacturing processes and assembly methods. Then those components are separated into the modules which canmake the product recycling easierby the parts material and it can make products greener. However, todesign the product during the sustainable process can meet the economy, this study examines the costs and line balancing.To be able to achieve above purpose, the study develops a mutation particle swarm optimization (MPSO) algorithm to calculate the approximate optimal green module and cost module. The goal of the green module is using the assembly methods and assembly sequence to calculate the minimize greenhouse gases and meet the module recycling. The goal of the costmodule is the minimize totalcosts. Then the study changes different parts materials which influenceon the impact of greenhouse gases.
    This study considersthe product ofsustainability, assembly, recycling and modularization at the design stage. Therefore, the product can be rapidly launched after mass-production and the redesign time for environmental protection conformity can be reduced. In recycling, the studyconsiders placing the components of the same material in the same module. Therefore, the components can be more easily recycled at the end of product life cycle.Moreover, when the product consists of more components which lead a complex structure, the studywill use modularized for clustering product. That can be the structure of the product simplification and reduce confusion in the production. The study provides designers with the greenmodule, the cost module and the different materialsmodule, and the designer can choose the right design strategic for company.Finally the study discusses the different green indicators effecting fortotal costs thatenable the designer to get the good balance withthe costs and sustainability.

    中文摘要 III 英文摘要 V 第壹章緒論 1 1.1 研究背景與動機 1 1.2研究目的 1 1.3研究架構 2 第貳章文獻探討 4 2.1 綠色設計 4 2.1.1 指導方針(Guideline) 5 2.1.2 矩陣 8 2.1.3數學模型 10 2.2 生命週期評估(Life Cycle Assessment) 12 2.3 周全設計 13 2.3.1 零組件關係度分析 13 2.3.2 模組化設計 15 2.3.3裝配性設計(Design for Assembly) 18 2.3.4 拆解設計 22 2.4 小節 27 第參章研究方法 28 3.1現有產品和運作分析 30 3.2現有產品零組件相關性分析 30 3.3 現有產品的生命週期評估以及總成本分析 31 3.4現有產品的模組和組裝順序最佳化 31 3.4.1 產品模組的組裝線平衡分析 32 3.4.2 現有產品的回收程度分析 33 3.4.3 突變型粒子群演算法(Mutative Particle Swarm Optimization,MPSO) 34 3.4.4演算法的編碼 37 3.4.5適切性函數(Fitness function) 38 3.4.6 利用演算法建構綠色/成本模組 38 3.4.7 突變機制 39 3.6 利用新材質重新設計 40 3.7 敏感度分析 41 第肆章案例分析 42 4.1空氣清淨器運作原理 42 4.2現有產品零組件分析 42 4.3產品零組件組裝關係分析 46 4.4現有產品生命週期評估和總成本分析 47 4.5突變型粒子群演算法求最佳綠色模組和成本模組以及組裝順序 48 4.5.1成本模組 49 4.5.2二氧化碳模組 51 4.5.3二氧化碳排放限制下的成本模組 53 4.6重新設計 57 4.6.1 求鋁合金材質不同模組的二氧化碳排碳量 60 4.6.2 求WPC材質不同模組的二氧化碳排碳量 63 4.7組裝方法和新設計方案的比較 67 4.7.1組裝方法的比較 67 4.7.2原本產品與新設計產品的比較 70 4.8敏感度分析 71 4.9.討論 73 4.9.1 貢獻 73 4.9.2 設計決策分析 74 4.9.3 文獻比較 75 4.9.4研究限制 76 第伍章結論 78 參考文獻 79 附錄 91

    1. H.-E. Tseng and C-E. Tang, “A Sequential Consideration for Assembly Sequence Planning and Assembly Line Balancing Using the Connector Concept”,International Journal of Production Research,44(1), 97–116 (2006)
    2. Y. Wang and J-H. Liu,“Chaotic Particle Swarm Optimization for Assembly Sequence Planning”, Robotics and computer-integrated manufacturing,26, 212-222(2010)
    3. L. Zhong, Y-C.Sun, O-E. Gabriel and H.Wu, “Disassembly Sequence Planning for MaintenanceBased on Metaheuristic Method”,The International Journal of Aircraft Engineering and Aerospace Technology, 83(3), 138–145(2011)
    4. O. Jolliet, M. Margni,R. Charles, S. Humbert, J. Payet, G. Rebitzer and R. Rosenbaum,“IMPACT 2002+: A New Life Cycle Impact Assessment Methodology”,The International Journal of Life Cycle Assessment,8(6), 324 – 330 (2003)
    5. M-C. Chiu and C-H. Chu, “Review of Sustainable Product Design from Life Cycle Perspectives”, International Journal of Precision Engineering and Manufacturing, 13(7), 1259-1272(2012)
    6. T-C. Kuo, “Enhancing Disassembly and Recycling Planning using Life-Cycle Analysis”, Robotics and Computer-Integrated Manufacturing,22, 420–428(2006)
    7. Y-J.Tseng , F-Y. Yu and F-Y. Huang,” A Green Assembly Sequence Planning Model with a Closed-loop Assembly and Disassembly Sequence Planning Using a Particle Swarm Optimization Method”, The International Journal ofAdvanced Manufacturing Technology, 57,1183–1197(2011)
    8. K-K. Seo, J-H. Park and D-S. Jang,” Optimal Disassembly Sequence Using Genetic Algorithms Considering Economic and Environmental Aspects”, The International Journal ofAdvanced Manufacturing Technology,18,371–380(2001)
    9. C-H. Chu, Y-P. Luh, T-C. Li and H. Chen,” Economical Green Product Design Based on Simplified Computer-Aided Product Structure Variation”, Computers in Industry, 60, 485–500(2009)
    10. H-E. Tseng,C-C. Chang and J-D. Li, ”Modular Design to Support Green Life-CycleEngineering”, Expert System with Applications,34(2),
    2524-2537(2008)
    11. H-E. Tseng, C-C. Chang and C-J. Cheng,” Disassembly-Oriented Assessment Methodology for Product Modularity”, International Journal of Production Research, 48(14-15), 4297–4320 (2010)
    12. K. Premalatha and A-M. Natarajan,”Hybrid PSO and GA for Global Maximization”, International Journal of Open Problems in Computer Science andMathematics,2(4) ,1998-6262( 2009)
    13. X-H. Shi , Y-C. Liang, H-P. Lee, C. Lu and L-M. Wang,”An Improved GA and a Novel PSO-GA-based Hybrid Algorithm”, Information Processing Letters, 93 ,255–261 (2005)
    14. M. Fargnoli and F. Kimura, ”Screening Life Cycle Modeling for Sustainable Product Design” Innovation in Life Cycle Engineering and Sustainable Development, 281–292(2006)
    15. H-E. Tseng, T-S. Chang andY-C. Yang, " A Connector-Based Approach To the Modular Formulation Problem for a Mechanical Product", The International Journal ofAdvanced Manufacturing Technology,24,161–171 (2004)
    16. Y. Zhang and J-K. Gershenson" An Initial Study of Direct Relationships between Life-cycle Modularity and Life-cycle Cost", Department of Mechanical and Aerospace Engineering Houghton,11(2),121-128 (2004)
    17. S.Smith and C-C. Yen, “Green Product Design through Product Modularization Using Atomic Theory”, Robotics and Computer-Integrated Manufacturing 26,790–798 (2010)
    18. J-K. Gershenson, G-J. Prasad and Y. Zhang,” Product Modularity: Definitions and Benefits”,Journal of Engineering Design, 14(3), 295–313( 2003)
    19. A-J-D. Lambert, “Optimizing Disassembly Processes Subjected to Sequence-Dependent Cost”,Computers and Operations Research, 34 ,536–551(2007)
    20. J-K. Gershenson, G-J. Prasad, Y. Zhang, ” Product Modularity: Measures and Design Methods”, Journal of Engineering Design, 15(1), 33–51( 2004)
    21. Y-P.Luh , C-H Chu and C-C. Pan,” Data Management of Green Product Development with Generic Modularized Product Architecture,” Computers in Industry, 61,223–234 (2010)
    22. S. Leibrecht,” Fundamental Principles for CAD-based Ecological Assessments” The International Journal of Life Cycle Assessment,10 (6), 436 – 444(2005)
    23. F.JosephandW.Kenneth,”How to Design for Environment and Minimize Life Cycle Cost” Institute of Electrical and Electronics Engineers, conference on(1994)
    24. G.Seliger,H-J.Kim,S.KernbaumandM.Zettl,”Approaches to Sustainable Manufacturing”, TheInternational Journal of Sustainable Manufacturing, 1, 58–77. (2008)
    25. S. Byggeth, G. Broman and K-H. Robèrt,”A Method for Sustainable Product Development Based on a Modular System of Guiding Questions”, Journal of Cleaner Production ,15, 1-11(2007)
    26. A. Güngör,” Evaluation of Disassemblability to Enable Design for Ddisassembly in Mass Production”, International Journal of Industrial Ergonomics ,32, 265–281( 2003)
    27. M-C. Chiu and G-E-O. Kremer,” Investigation of the Applicability of Design for X tools during Design Concept Evolution: ALiterature Review",International Journal of Product Development, 13(2),132-167(2011)
    28. A.Jose, and M.Tollenaere, "Modular and Platform Methods for Product Family Design: Literature Analysis", Journal of Intelligent Manufacturing, 16,371-390(2005)
    29. Y. Umeda, S. Fukushige, K. Tonoike and S. Kondo” Product Modularity for Life Cycle Design”, CIRP Annals - Manufacturing Technology, 57,13–16 (2008)
    30. M-D. Tabone, J-J.Cregg, E-J.Beckman and A.Landis, “Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers”, Environmental Science andTechnology ,44 (21),8264-8269(2010)
    31. C.Telenko and C-C.Seepersad, "A Methodology for Identifying Environmentally Conscious Guidelines for Product Design", Journal of Mechanical Design, 132(9),0910091-0910099(2011)
    32. G-D. Taylor, "Design for Global Manufacturing and Assembly",Institute of Industrial EngineersTransactions,29, 585-597(1997)
    33. C. Chen, J. Zhu, J-Y. Yu and H. Noori,” A New Methodology for Evaluating Sustainable Product Design Performance with Two-Stage Network Data Envelopment Analysis”, European Journal of Operational Research ,221,348–359,( 2012)
    34. Q. Shan and Y. Chen,” Product Module Identification Based on Assured Customer Requirements”,Procedia Engineering, 15,5313-5317( 2011)
    35. K-E.Moore, A. Gungor andS-M.Gupta, “Petri Net Approach to DisassemblyProcess Planning for Products with Complex AND/OR PrecedenceRelationships”,European Journal of Operation Research, 135(2), 428-449(2001).
    36. Y-M.Huang andC-T. Huang, “Disassembly Matrix for Disassembly Process of Products”,International Journal of Production Research, 40(2), 255-273(2002)
    37. A.Bourjault , “Contribution a` une approche me’thodologique de l’assemblageautomatise ’: elaboration automatique des se’ quences ope’ ratoires,” PhD Thesis,Besanc﹐on, France: Faculty of Science and Technology, Universite’ deFranche-Comte”12 November (in French),(1984).
    38. D. Homem. L-S Mello and A-CSanderson , “Representations of MechanicalAssembly Sequences”, Institute of Electrical and Electronics Engineers Transactions on Robotics and Automation, 7(2),211-227(1991)
    39. D. Homem. L-S Mello and A-CSanderson, “AND/OR Graph Representation ofAssembly Plans”,Institute of Electrical and Electronics Engineers Transactions on Robotics and Automation, 6(2), 188-199( 1990).
    40. S.Gerner, A. Kobeissi,B. David,Z. Binder and B-D. Genon,
    “Integrated Approach for Disassembly Processes Generation and Recycling
    Evaluation of an End-of-Life Product”,International Journal of Production
    Research, 43(1),195-222(2005)
    41. A.Gungor, M.SurendraandS-M.Gupta, “Disassembly Sequence Plan
    Generation Using Branch-and-Bound Algorithm”,International Journal of
    Production Research, 39(3), 481-509( 2001)
    42. H-H-T.Huang, ,M-H.Wang, and M- R.Johnson, “Disassembly Sequence
    Generation Using a Neural Network Approach”, Journal of Manufacturing
    Systems, 19(2), 73–82( 2000)
    43. S-M.McGovernandS-M. Gupta, “Ant Colony Optimization for DisassemblySequencing with Multiple Objectives”, International Journal of Advanced Manufacturing Technology, 30(5-6), 481-496(2006)
    44. J-F.Wang, J-H.Liu andY-FZhong, , “A Novel Ant Colony Algorithm for
    Assembly Sequence Planning”, International Journal of Advanced Manufacturing Technology, 25(11-12), 1137-1143(2005).
    45. W. Hui, X. Dong and D. Guanghong,” A Genetic Algorithm for Product Disassembly Sequence Planning” ,Neurocomputing ,71,2720– 2726 (2008)
    46. S. Smith and W-H. Chen,” A New Graph-based Selective Disassembly Sequence Planning for Green Product Design”,Design for Innovative Value Towards a Sustainable Society, 806-810 (2012)
    47. E.Jones, and D.Harrison, “Investigating the Use of TRIZ in Eco-innovation”, The TRIZ Journal Article Archive,3 ,209-214 (2000)
    48. A.Ericsson, and G. Erixon ,”Controlling design variants: Modular
    Product platforms” New York: ASME Press. (1999)
    49 B. Daniel and K. James, “Swarm Intelligence Symposium,” Institute of Electrical and Electronics Engineers 120 – 127,Date of Conference: April (2007)
    50. M-A. Ilgin and S-M.Gupta. Surendra, “Environmentally conscious manufacturing and product recovery (ECMPRO):A review of the state of the art”, Journal of Environmental Management, 91, 563nal (2010)
    51. J.Elkington, “Cannibals with Forks: the Triple Bottom Line of 21st Century
    Business,” New Society Publishers,( 1997)
    52. S.Meyers, “The most important design guideline? [user interfaces]”, Institute of
    Electrical and Electronics Engineers, 21(4),14-16(2004)
    53. H-Z. Hessami, M. Golsefid-Alav, S-M.Shahram and K.M.Reza, ” Evaluation ofSuccess Factors of ISO 14001- Based EMS Implementation and Ranking the
    Cement Industry Using the TOPSIS Method”,Journal of Applied &Environmental Biology, 2(10) ,523-530 (2012)
    54. S-P. Sivapirakasam , J. Mathew and M. Surianarayanan ,” Multi-attribute
    decision making for green electrical discharge machining”, Expert Systems with Applications ,38 ,8370–8374 (2011)
    55. M. Kilbridge and L. Wester, “The Balance Delay Problem”,Management Science, 8(1),69-84(1961)
    56. J-H. Spangenberg, A-L.Fuad , and K.Blincoe , “Design for Sustainability (DfS): the interface of sustainable production and consumption,” Journal of Cleaner Production,18(15), 1485-1493(2010)
    57.A.Veshagh, and A.Obagun, , “Survey of Sustainable Life Cycle Design and Management,” Proc. of 14th CIRP Conference on Life Cycle Engineering, 237-242( 2007)
    58. S-A.Waage, “Re-considering product design: a practical ‘‘road-map’’ for integration of sustainability issues,” Journal of Cleaner Production, 15(7), 638-649(2007)
    59. L-Y.Ljungberg, “Materials selection and design for development of sustainable products,” Materials and Design, 28(2), 466-479( 2007)
    60. M-D. Bovea, and V-P. Belis , “A taxonomy of eco-design tools for integrating environmental requirements into the product design process,” Journal of Cleaner Production, 20(1), 61-71( 2012)
    61.Y-C. Kang, D-M Chun, Y. Jun and S-H.Ahn , “Computeraided Environmental Design System for the Energy-using Product (EuP) Directive,” International Journal of Precision Engineering and Manufacturing,11(3), 397-406(2010)
    62 N. De Silva, , I-S.Jawahir, O.Dillon , and M.Russell , “A new comprehensive methodology for the evaluation of product sustainability at the design and development stage of consumer electronic products,” International Journal of Sustainable Manufacturing, 1(3), 251-264(2009)
    63. D.Russoa ,D.Regazzoni, and T.Montecchi , “Eco-design with TRIZ laws of evolution,” Procedia Engineering, 9, 311-322(2011)
    64. T.Hur ,J.Lee , J.Ryu , and E.Kwon , “Simplified LCA and matrix methods in identifying the environmental aspects of a product system,” Journal of Environmental Management, 75, 229-237(2005)
    65. P. Knight,and J-O. Jenkins, “Adopting and applying eco-design techniques: a practitioners perspective,” Journal of Cleaner Production, 17(5), 549-558(2009)
    66. A.Azapagic ,A.Millington , and A.Collett, “A methodology for integrating sustainability considerations into process design,” Chemical Engineering Research and Design, 84(6), 439-452(2006)
    67. W.Yan, C-H.Chen, and W-C.Chang, “An investigation into sustainable product conceptualization using a design knowledge hierarchy and Hopfield network,” Computers & IndustrialEngineering, 56, 1617-1626(2009)
    68. H.Kobayashi , “A systematic approach to eco-innovative product design based on life cycle planning,” Advanced Engineering Informatics, 20, 113-125(2005)
    69. T-C. Kuo , “The construction of a collaborative-design platform to support waste electrical and electronic equipment recycling,” Robotics and Computer-Integrated Manufacturing, 26, 100-108(2010)
    70. C-M. Rose and K.Ishii,“Product end-of-life strategy categorization design tool”, Journal of electronics manufacturing,91(1),1-20(1999)
    71. M-K Tiwari, Prakash, A. Kumar1, and A-R. Mileham,”Determination of an optimal assembly sequenceusing the psychoclonal algorithm”,Journal of Engineering Manufacture,219(1),137-149(2005)
    72. B. Lazzerini and F. Marcelloni,”A genetic algorithm for generating optimal assembly plans”,14(4),319-329(2000)
    73. T-E. Abell, M-C-M.Lui, T-D.Fazio and E-D. Whitney,”An integrated computer aid for generating and evaluating assembly sequences for mechanical products”,Institute of Electrical and Electronics EngineersJournal of Robotics and Automations, 7(1),78-94 (1991)
    74.D. Homem. L-S Mello and A-CSanderson, ”A correct and complete algorithm for the generation of mechanical assembly sequences,”Institute of Electrical and Electronics Engineers Journal of Robotics and Automations, 7(2), 228-240 (1991)
    75. S. Zorc, D. Noe and I. Kononwnko,”Efficient derivationof the optimal assembly sequence from product description”,29(2),159-179(1998)
    76. H.Takeyama , H.Sekiguchi , T.Kojima, K.Inoue and T.Honda , “Study on
    Automatic Determination of Assembly Sequence,” CIRP Annals, 32(1), 371-374(1983).
    77. D.Hu, Y.Huand C. Li, “Mechanical product disassembly sequence and pathplanning based on knowledge and geometric reasoning,” International Journal ofAdvanced Manufacturing Technology, 19(9), 688–696(2002)
    78.T-C, Kuo, “Disassembly Sequence and Cost Analysis for ElectromechanicalProducts,” Robotics and Computer-Integrated Manufacturing, 16(1), 43-54(2000)
    79. T.Dong, L.Zhang, R.Tong and J-X.Dong, “A Hierarchical Approach to
    Disassembly Sequence Planning for Mechanical Product,” International Journal of Advanced Manufacturing Technology, 30(5-6), 507-520(2006)
    80. Z-P. Yin, H. Ding, L. HX and X. YL,”A connector-based hierarchical approach to assembly sequence planning for mechanical assemblies”,ComputerAided Design,35(1),37-56(2003)
    81. T-C Kuo, S-H Huang and H-C Zhang, “Design for manufacture and design for ‘X’: concepts, applications, and perspectives”, Computers and Industrial Engineering,41(3),241-260(2001)
    82. P.Gu, and X.Yan,” CAD-directed automatic assembly sequence planning”
    International Journal of Production Research, 33(11), 3069-3100 (1995)
    83. C.Mascle and H-P. Zhao,” Integrating environmental consciousness in product/process development based on life-cycle thinking”,International Journalof Production Economics, 12, 5-17(2008)
    84. L-M. Galantucci, G. Percoco and R. Spina,”Assembly and Disassembly Planning by using Fuzzy Logic & Genetic Algorithms”,International Journal of Advanced Robotic Systems,2(1),67-74(2004)
    85. H-G. Lv and C. Lu,”An assembly sequence planning approach with a discrete
    particle swarm optimization algorithm”,The International Journal of Advanced Manufacturing Technology,50,761-770(2010)
    86. C. Lu, Y-S.Wong, and J-Y-H. Fuh,”An enhanced assembly planning approach using a multi-objective genetic algorithm”,Proceedings of the Institution of Mechanical Engineers, Part B, Journal of engineeringmanufacture, 220(2),220-225(2006)
    87. A-J-D. Lambert,“Exact Methods in Optimum Disassembly Sequence Search for
    Problems Subjects to Sequence Dependent Costs,” International Journal of
    Management Science, 34, 538-549(2006)
    88. R. Holt and C. Barnes,”Towards an integrated approach to “Design for X”: an agenda for decision-based DFX research”,Research in Engineering Design,21(2),123-136(2010)
    89. Y.Zhang, H-P.Wangand C.Zhang, “Green QFD-II: A life cycle approach forenvironmentally conscious manufacturing by integrating LCA and LCC into
    QFD matrices,” International Journal of Production Research, 37(5), 1075-1091(1999)
    90. C.Mehta and B.Wang, “Green Quality Function Deployment III: AMethodology for Developing Environmentally Conscious Products,” Journal ofDesign and Manufacturing Automation, 4(1), 1-16( 2001)
    91. C-H.Lee, T-L.Wu, Y-L.Chen and J-H. Wu,”Characteristics and discrimination of five types of wood-plastic composites by FTIR spectroscopy combined with principal component analysis”,64(6),699-704(2010)
    92. K-R.ALLEN and S-S.CARLSON, “Defining product architecture during conceptualDesign”, Proceedings of the 1998 ASME Design Engineering Technical Conference, Atlanta,GA (New York: The American Society of Mechanical Engineers) (1998)
    93. K. Ulrich and K.Tung, “Fundamentals of product modularity”. Proceedings of the 1991ASME Design Engineering Technical Conferences—Conference on Design/ManufactureIntegration, Miami, FL(1991)
    94. C-C.Huang and A.Kusiak, “Modularity in design of products and systems”, Instituteof Electrical and Electronics EngineersTransactions on Systems, Man, and Cybernetics—Part A, 28, 66–77( 1998)
    95. R.Marshall, P-G. Leaney and L-P.Botterell, “Enhanced product realization throughmodular design: an example of product/process integration”, Journal of Integrated Design andProcess Technology, 3, 143–150(1998)
    96.H.C Kim, G.A Keoleian and Y.A Horie,”Optimal household refrigerator
    replacement policy for life cycle energy, greenhouse gas emissions, and cost”,
    Energy policy, 34(15),2310 -2323(2006)
    97. X. Lai and J-K. Gershenson,”Representation of similarity and dependency
    for assembly modularity”, The international journal of advanced manufacturing technology,37(7),803-827(2008)
    98.J-K. Gershenson, G-J. Prasad and S. Allamneni,”MODULAR PRODUCT DESIGN : A LIFE-CYCLE VIEW”,Society for Design and Process Science,3(4),13-26(1999)
    99. K. Ramani, D. Ramanujan, W-Z. Bernstein, F. Zhao, J. Sutherland, C. Sutherland , J-K. Choi ,H.Kim and D. Thurston,”Integrated Sustainable Life Cycle Design: A Review”, Journal of mechanical design,132(9), 091004(1-15)(2010)
    100. K.Feldmann,S. Traunter, H.Lohrmannand Melzer, K., “Computer-
    Based Product Structure Analysis for Technical Goods Regarding Optimal
    End-of-Life Strategies,” Proceedings of the Institution of Mechanical Engineers, 215(5), 683–693(2001)
    101. J-S.Meehan, A-H-B. Duffyand R-I.Whitfield, “Supporting
    ‘Design for Re-use’With Modular Design,” Concurrent Engineering: Research and Applications, 15(2),141–155( 2007)
    102. F.Kimura, S.Kato, T. Hataand T.Masuda, “Product Modularization
    for Parts Reuse in Inverse Manufacturing,” CIRP Annal., 50(1), 89–
    92(2001)
    103. Colin Drury, “Standard Costing”, Chartered Institute of Management Accountants( 1992)
    104 王怡心,”成本與管理會計”,三民書局(2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE