研究生: |
楊倬昀 |
---|---|
論文名稱: |
具親疏水特性仿生功能性表面結構之力學行為 MECHANICAL BEHAVIORS OF BIOMIMETIC FUNCTIONAL SURFACE STRUCTURES WITH HYDROPHOBIC AND HYDROPHILIC PROPERTIES |
指導教授: | 宋震國 |
口試委員: |
林昭安
傅建中 黃智永 冉曉雯 余沛慈 宋震國 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 67 |
中文關鍵詞: | 仿生功能性表面結構 、空氣保留能力 、槐葉蘋結構 、蓮花結構 、蛾眼結構 、混合仿生結構 、超疏水 、抗汙 、抗反射 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討人厭槐葉蘋(Salvinia molesta)葉面結構之力學行為,並仿生此結構來提升一功能性表面空氣保留的能力。不同於現有的蓮花結構,人厭槐葉蘋有一親水性補釘在葉面表面的超疏水結構之頂端。因為親水性補釘與周圍的疏水性表面會產生表面張力梯度而造成馬蘭哥尼效應(Marangoni effect),故本研究將此效應加入並重新推導表面濕潤相關的方程式(接觸角、滑動角與接觸線密度),建立此仿生結構之理論模型。此外,本研究提出一創新的製造流程,整合常見的微奈米製造技術來製作出仿生槐葉蘋與蓮花之結構,並量測兩個結構的表面濕潤特性來驗證理論模型的正確性。實驗結果證明,與蓮花結構相比,仿生槐葉蘋結構具有卓越的空氣保留的能力,且同樣具備超疏水及自潔特性。
因此,本研究將仿生槐葉蘋葉面結構與具光學抗反射特性之蛾眼(Moth eye)結構混合,用以製作出一超疏水、自潔、抗汙與抗反射能力的多功能表面結構。本研究利用了奈米球微影技術(Nanosphere lithography)、反應式離子蝕刻(Reactive Ion Etching)與掀離製程(Lift-off process),成功的製作出大面積氮化矽基的多功能表面結構。量測實驗結果顯示,此混合槐葉蘋葉面與蛾眼仿生之結構不僅擁有卓越的超疏水、自潔、抗汙的能力,在光學特性上更具有寬頻譜範圍的抗反射能力。此外,在雨滴撞擊的情況下,此仿生多功能表面結構相較於傳統混合蓮花葉面與蛾眼之結構具有更加出眾的空氣保留能力,且雨滴撞擊過後仍然具備著表面自潔的能力。
[1] M. Nosonovsky, 2007, “Multiscale Roughness and Stability of Superhydrophobic Biomimetic Interfaces,” Langmuir, Vol. 23, pp. 3157-3161.
[2] M. Nosonovsky, B. Bhushan, 2009, “Superhydrophobic Surfaces and Emerging Applications: Non-Adhesion, Energy, Green Engineering,” Current Opinion in Colloid & Interface Science, Vol. 14, pp. 270-280.
[3] B. Bhushan, 2009, “Biomimetics: Lessons from Nature - An Overview,” Philosophical Transactions of the Royal Society A, Vol. 367, pp. 1445-1486.
[4] Y. K. Lai, Z. Chen, and C. J. Lin, 2011, “Recent Progress on the Superhydrophobic Surfaces with Special Adhesion: From Natural to Biomimetic to Functional,” Journal of Nanoengineering and Nanomanufacturing, Vol. 1, pp. 18-34.
[5] K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, 2003, “Superhydrophobic Carbon Nanotube Forests,” Nano Letters, Vol. 3, pp. 1701-1705.
[6] A. Ahuja, J. A. Taylor, V. Lifton, A. A. Sidorenko, T. R. Salamon, E. J. Lobaton, P. Kolodner, and T. N. Krupenkin, 2008, “Nanonails: A Simple Geometrical Approach to Electrically Tunable Superlyophobic Surfaces,” Langmuir, Vol. 24, pp. 9-14.
[7] W. J. Hamilton and M. K. Seely, 1976, “Fog Basking by the Namib Desert Beetle, Onymacris Unguicularis,” Nature, Vol. 262, pp. 284-285.
[8] P. Lalanne and G. M. Morris, 1997, “Antireflection Behavior of Silicon Subwavelength Periodic Structures for Visible Light,” Nanotechnology, Vol. 8, pp. 53-56.
[9] G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, and S. Mu, 2008, “The Fabrication of Subwavelength Anti-Reflective Nanostructures Using a Bio-Template,” Nanotechnology, Vol. 19, pp. 095605.
[10] K. Koch, B. Bhushan, and W. Barthlott, 2008, “Diversity of Structure, Morphology and Wetting of Plant Surfaces,” Soft Matter, Vol. 4, pp. 1943-1963.
[11] X. Zhang, F. Shi, J. Niu, Y. Jiang, and Z. Wang, 2008, “Superhydrophobic Surfaces: From Structural Control to Functional Application,” Journal of Materials Chemistry, Vol. 6, pp. 621-633.
[12] B. Bhushan, 2010, Springer Handbook of Nanotechnology, Springer, Heidelberg, 3rd ed., Germany.
[13] F. Xia and L. Jiang, 2008, “Bio-Inspired, Smart, Multiscale Interfacial Materials,” Advanced Materials, Vol. 20, pp. 2842-2858.
[14] W. L. Min, B. Jiang, and P. Jiang, 2008, “Bioinspired Self-Cleaning Antireflection Coatings,” Advanced Materials, Vol. 20, pp. 3914-3918.
[15] J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan, and Y. Cui, 2010, “Bioinspired Self-Cleaning Antireflection Coatings,” Nano Letters, Vol. 10, pp. 1979-1984.
[16] K.C. Park, H. J. Choi, C. H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, 2012, “Nanotextured Silica Surfaces with Robust Superhydrophobicity and Omnidirectional Broadband Supertransmissivity,” ACS Nano, Vol. 6, pp. 3789-3799.
[17] C. Neinhuis and W. Barthlott, 1997, “Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces,” Annals of Botany, Vol. 79, pp. 667-677.
[18] W. Barthlott and C. Neinhuis, 1997, “The Purity of Sacred Lotus or Escape from Contamination in Biological Surfaces,” Planta, Vol. 202, pp. 1-8.
[19] W. E. Reif, 1985, “Squamation and Ecology of Sharks,” Courier Forschungsinstitut Senckenberg, Vol. 78, pp. 1-255.
[20] D. W. Bechert, M. Bruse, and W. Hage, 2000, “Experiments with Three-dimensional Riblets as an Idealized Model of Shark Skin,” Experiments in Fluids, Vol. 28, pp. 403-412.
[21] A.R. Parker and C. R. Lawremce, 2001, “Water Capture by a Desert Beetle,” Nature, Vol. 414, pp. 33-34.
[22] A. Summers, 2004, “Like Water Off a Beetle’s Back,” Natural History, Vol. 2, pp. 26-27.
[23] X. Gao and L. Jiang, 2004, “Biophysics: Water-repellent Legs of Water Striders,” Nature, Vol. 432, pp. 36.
[24] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, and L. Jiang, 2008, “Petal Effect: A Superhydrophobic State with High Adhesive Force,” Langmuir, Vol. 24, pp. 4114-4119.
[25] H.F. Bohn and W. Federle, 2004, “Insect Aquaplaning: Nepenthes Pitcher Plants Capture Prey with the Peristome, a Fully Wettable Water-Lubricated Anisotropic Surface,” PNAS, Vol. 101, pp. 14138-14143.
[26] T. S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, and J. Aizenberg, 2011, “Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity,” Nature, Vol. 477, pp.443-447.
[27] J. Zhang, A. Wang, and S. Seeger, 2014, “Nepenthes Pitcher Inspired Anti-Wetting Silicone Nanofilaments Coatings: Preparation, Unique Anti-Wetting and Self-Cleaning Behaviors,” Advanced Functional Materials, Vol. 24, pp. 1074-1080.
[28] W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, and H. F. Bohn, 2010, “The Salvinia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention Under Water,” Advanced Materials, Vol. 22, pp. 2325-2328.
[29] J. Hunt and B. Bhushan, 2011, “Nanoscale Biomimetics Studies of Salvinia Molesta for Micropattern Fabrication,” Journal of Colloid and Interface Science, Vol. 363, pp. 187-192.
[30] T. Onda, S. Shibuichi, N. Satoh and K. Tsujii, 1996, “Super-Water-Repellent Fractal Surfaces,” Langmuir, Vol. 12, pp. 2125-2127.
[31] D. Öner and T. J. McCarthy, 2000, “Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability,” Langmuir, Vol. 16, pp. 7777-7782.
[32] J. Y. Shiu, C. W. Kuo, P. Chen and C. Y. Mou, 2004, “Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography,” Chemistry Materials, Vol. 16, pp. 561-564.
[33] A. Pozzato, S. D. Zilio, G. Fois, D. Vendramin, G. Mistura, M. Belotti, Y. Chen and M. Natali, 2006, “Superhydrophobic Surfaces Fabricated by Nanoimprint Lithography,” Microelectronic Engineering, Vol. 83, pp. 884-888.
[34] T. Baldacchini, J. E. Carey, M. Zhou and E. Mazur, 2006, “Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser,” Langmuir, Vol. 22, pp. 4917-4919.
[35] K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. Mckinley and K. K. Gleason, 2003, “Superhydrophobic Carbon Nanotube Forests,” Nano Letters, Vol. 3, pp. 1701-1705.
[36] Y. Wu, H. Sugimura, Y. Inoue and O. Takai, 2002, “Thin Films with Nanotextures for Transparent and Ultra Water-Repellent Coatings Produced from Trimethylmethoxysilane by Microwave Plasma CVD,” Chemical Vapor Deposition, Vol. 8, pp. 47-50.
[37] H. Tavana, A. Amirfazli and A. W. Neumann, 2006, “Fabrication of Superhydrophobic Surfaces of n-Hexatriacontane,” Langmuir, Vol. 22, pp. 5556-5559.
[38] L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang and D. Zhu, 2002, “Super-hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers,” Angewandte Chemie International Edition, Vol. 14, pp. 1221-1223.
[39] L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang and D. Zhu, 2003, “Creation of a Superhydrophobic Surface from an Amphiphilic Polymer,” Angewandte Chemie International Edition, Vol. 42, pp. 800-802.
[40] L. Zhang, Z. Zhou, B. Cheng, J. M. DeSimone, and E. T. Samulski, 2006, “Superhydrophobic Behavior of a Perfluoropolyether Lotus-Leaf-like Topography,” Langmuir, Vol. 22, pp. 8576-8580.
[41] C. Guo, L. Feng, J. Zhai, G. Wang, Y. Song, L. Jiang and D. Zhu, 2004, “Large-Area Fabrication of a Nanostructure-Induced Hydrophobic Surface from a Hydrophilic Polymer,” ChemPhysChem, Vol. 5, pp. 750-753.
[42] L. Jiang, Y. Zhao, and J. Zhai, 2004, “A Lotus-Leaf-like Superhydrophobic Surface: A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics,” Angewandte Chemie International Edition, Vol. 116, pp. 4438-4441.
[43] M. Ma, R. H. Hill, J. L. Lowery, S. V. Fridrikh, G. C. Rutledge, 2005, “Electrospun Poly(Styrene-co-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity,” Langmuir, Vol. 21, pp. 5549-5554.
[44] X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang and D. Zhu, 2004, “Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films,” Journal of American Chemical Society, Vol. 126, pp. 62-63.
[45] S. Li, H. Li, X. Wang, Y. Song, Y. Liu, L. Jiang and D. Zhu, 2002, “Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes,” Journal Physical Chemistry B, Vol. 106, pp. 9274-9276.
[46] T. N. Krupenkin, J. A. Taylor, T. M. Schneider, and S. Yang, 2004, “From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces,” Langmuir, Vol. 20, pp 3824–3827.
[47] J. P. Youngblood and T. J. McCarthy, 1999, “Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) Using Radio Frequency Plasma,” Macromolecules, Vol. 32, pp. 6800-6806.
[48] B. Qian and Z. Shen, 2005, “Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates,” Langmuir, Vol. 21, pp. 9007-9009.
[49] T. Young, 1985, “An Essay on the Cohesion of Fluids,” Philosophical Transactions of Royal Society of London, Vol. 95, pp. 65-87.
[50] R. N. Wenzel, 1936, “Resistance of Solid Surfaces to Wetting by Water,” Industrial Engineering Chemistry, Vol. 28, pp. 988-994.
[51] A. B. D. Cassie and S. Baxter, 1944, “Wettability of Porous Surfaces,” Transactions of the Faraday Society, Vol. 40, pp. 546-551.
[52] J. Bico, C. Marzolin, and D. Quéré, 1999, “Pearl Drops,” Europhysics Letters Vol. 47, pp. 220-226.
[53] A. Buzágh and E. Wolfram, 1956, “Bestimmung der Haftfähigkeit von Flüssigkeiten an festen Körpern mit der Abreißwinkelmethode,” Kolloid-Zeitschrift, Vol. 149, pp. 125.
[54] E. Wolfram and R. Faust, 1978, Wetting, Spreading, and Adhesion, Padday, J. F., Ed.; Academic Press: London, Chapter 10, pp. 213.
[55] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, 2000, “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces,” Langmuir, Vol. 16, pp 5754-5760.
[56] D. Richard and D. Quéré, 2000, “Bouncing Water Drops,” Europhysics Letters, Vol. 50, pp. 769-775.
[57] J. Bico, U. Thiele, and D. Quéré, 2002, “Wetting of Textured Surfaces,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 206, pp. 41-46.
[58] A. Marmur, 2003, “Wetting on Hydrophobic Rough Surface: To Be Heterogenous or Not To Be?,” Langmuir, Vol. 19, pp. 8343-8348.
[59] A. Marmur, 2004, “The Lotus Effect: Superhydrophobicity and Metastability,” Langmuir, Vol. 20, pp. 3517-3519.
[60] C. W. Extrand, 2002, “Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces,” Langmuir, Vol. 18, pp. 7991-7999.
[61] C. W. Extrand, 2004, “Criteria for Ultralyophobic Surfaces,” Langmuir Vol. 20, pp. 5013-5018.
[62] A. Lafuma and D. Quéré, 2003, “Superhydrophobic States,” Nature Materials, Vol. 2, pp. 457-460.
[63] Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, 2002, “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets,” Langmuir, Vol. 18, pp. 5818-5822.
[64] N. A. Patankar, 2003, “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces,” Langmuir, Vol. 19, pp. 1249-1253.
[65] N. A. Patankar, 2004, “Transition between Superhydrophobic States on Rough Surfaces,” Langmuir, Vol. 20, pp. 7097-7102.
[66] N. A. Patankar, 2004, “Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars,” Langmuir, Vol. 20, pp. 8209-8213.
[67] Q. S. Zheng, Y. Yu, and Z. H. Zhao, 2005, “Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces,” Langmuir, Vol. 21, pp. 12207-12212.
[68] Y. C. Jung and B. Bhushan, 2006, “Contact Angle, Adhesion and Friction Properties of Micro-And Nanopatterned Polymers for Superhydrophobicity,” Nanotechnology, Vol. 17, pp. 4970-4980.
[69] B. Bhushan and Y. C. Jung, 2006, “Micro- and Nanoscale Characterization of Hydrophobic and Hydrophilic Leaf Surfaces,” Nanotechnology, Vol. 17, pp. 2758-2772.
[70] B. Bhushan and Y. C. Jung, 2007, “Wetting Study of Patterned Surfaces for Superhydrophobicity,” Ultramicroscopy, Vol. 107, pp. 1057-1060.
[71] Y. C. Jung and B. Bhushan, 2007, “Wetting Transition of Water Droplets on Superhydrophobic Patterned Surfaces,” Scripta Materialia, Vol. 57, pp. 1057-1060.
[72] Y. C. Jung and B. Bhushan, 2008, “Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces,” Langmuir, Vol. 24, pp. 6262-6269.
[73] C. G. L. Furmidge, 1962, “Studies at Phase Interfaces I. The Sliding of Liquid Drops on Solid Surfaces and a Theory for Spray Retention,” Journal of Colloid Interface Science, Vol. 17, pp. 309-324.
[74] P. G. de Gennes, 1985, “Wetting: Statics and Dynamics,” Reviews of Modern Physics, Vol. 57, pp. 827-863.
[75] F. Brochard, 1989, “Motions of Droplets on Solid Surfaces Induced by Chemical or Thermal Gradients,” Langmuir, Vol. 5, pp. 432-438.
[76] M. K. Chaudhury and G. M. Whitesides, 1992, “How to Make Water Run Uphill,” Science, Vol. 256, pp. 1539-1541.
[77] C. L. M. H. Navier, 1823, “Memoire Sur Les Lois Du Mouvement Des Fluides,” Mémoires de l'Académie Royale des Sciences de l'Institut de France, pp. 389-440.
[78] J. C. Maxwell, 1879, “On Stresses in Rarefied Gases arising from Inequalities of Temperature,” Philosophical Transactions of the Royal Society London. Vol. 170, pp.231-256.
[79] O. I. Vinogradova, 1995, “Drainage of a Thin Liquid-Film Confined between Hydrophobic Surfaces,” Langmuir, Vol. 11, pp. 2213-2220.
[80] Y. Wang, B. Bhushan and A. Maali, 2009, “AFM Measurement of Boundary Slip on Hydrophilic, Hydrophobic and Superhydrophobic Surfaces,” Journal of Vacuum Science and Technology A, Vol. 27, pp. 754-760.
[81] C. Y. Yang, C. Y. Yang, C. K. Sung, and C. Y. Huang, 2014, “Design of Slip Boundary Produced by a Lotus Structure Applied to a Hydrostatic Bearing,” Tribology Letters, Vol. 55, pp. 55-64.
[82] C. Y. Yang, C. Y. Yang, and C. K. Sung, 2013, “Enhancing Air Retention by Biomimicking Salvinia Molesta Structures,” Japanese Journal of Applied Physics, Vol. 52, pp. 06GF08.
[83] C. L. Wu, C. Y. Yang, T. P. An, J. W. Lin, and C. K. Sung, 2012, “Anti-Adhesion Treatment for Nanoimprint Stamps Using Atmospheric Pressure Plasma CVD (APPCVD),” Applied Surface Science, Vol. 261, pp. 441-446.
[84] B. Cappella and G. Dietler, 1999, “Force-distance Curves by Atomic Force Microscopy,” Surface Science Reports, Vol. 34, pp. 1-104.
[85] P. B. Clapham and M. C. Hutley, 1973, “Reduction of Lens Reflexion by the “Moth Eye” Principle,” Nature, Vol. 244, pp. 281-82
[86] W. H. Miller, G. D. Bernard, and J. L. Allen, 1968, “The Optics of Insect Compound Eyes,” Science, Vol. 162, pp. 760-767.
[87] S. J. Wilson and M. C. Hutley, 1982, “The Optical Properties of ‘Moth Eye’ Antireflection Surfaces,” Optica Acta: International Journal of Optics, Vol. 29: pp. 993-1009.
[88] P. Lalanne and G. M. Morris, 1997, Antireflection Behavior of Silicon Subwavelength Periodic Structures for Visible Light, Nanotechnology, Vol. 8, pp. 53-56.
[89] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. S. Chen, Y. Lin, W. Liu, and J. A. Smart, 2007, “Optical Thin-film Materials with Low Refractive Index for Broadband Elimination of Fresnel Reflection,” Nature Photonics, Vol. 1, pp. 176-179.
[90] P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, 2009, “Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns,” Advanced Materials, Vol. 21, pp. 1618-1621.
[91] M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, 2010, “Improved Optical Transmission and Current Matching of a Triple-junction Solar Cell Utilizing Sub-wavelength Structures”, Optics Express, Vol. 18, pp. A308-A313.
[92] W. L. Min, B. Jiang, and P. Jiang, 2008, “Bioinspired Self-cleaning Antireflection Coatings,” Advanced Materials, Vol. 20, pp. 3914-18.
[93] Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, 2009, “Bioinspired Silicon Hollow-Tip Arrays for High Performance Broadband Anti-Reflective and Water-Repellent Coatings,” Journal of Materials Chemistry, Vol. 19, pp. 1806-10.
[94] Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B, Yang, 2010, “Bioinspired Silica Surfaces with Near-Infrared Improved Transmittance and Superhydrophobicity by Colloidal Lithography,” Langmuir, Vol. 26, pp. 9842-47.
[95] C. M. Chen, C. W. Hsieh, C. F. Ho, and C. K. Sung, 2012, “Insertion Structures for Transparent Metal Electrodes Prepared by Nanoimprint Lithography,” Applied Physics Express, Vol. 5, pp. 044202.
[96] C. L. Wu, C. K. Sung, P. H. Yao, and C. H. Chen, 2013, “Sub-15 nm Linewidth Gratings Using Roll-to-roll Nanoimprinting and Plasma Trimming to Fabricate Flexible Wire-grid Polarizers with Low Color Shift,” Nanotechnology, Vol. 24, pp. 265301.
[97] C. H. Liu, P. L. Niu, and C. K. Sung, 2014, “Integrating Anti-Reflection and Superhydrophobicity of Moth-eye-like Surface Morphology on a Large-area Flexible Substrate,” Journal of Physics D: Applied Physics, Vol. 47, pp. 15401-15405.
[98] H. Yoon, H. E. Jeong, T. Kim, T. J. Kang, D. Tahk, K. Char, and K. Y. Suh, 2009, “Adhesion Hysteresis of Janus Nanopillars Fabricated by Nanomolding and Oblique Metal Deposition,” Nano Today, Vol. 4, pp. 385-392.
[99] H. E. Jeong, M. K. Kwak, and K. Y. Suh, 2010, “Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling,” Langmuir, Vol. 26, pp. 2223-2226.
[100] A. G. Gillies, J. Kwak, and R. S. Fearing, 2013, “Controllable Particle Adhesion with a Magnetically Actuated Synthetic Gecko Adhesive,” Advanced Functional Materials, Vol. 23, pp. 3256-3261.
[101] K. Ichimura, S. K. Oh, and M. Nakagawa, 2000, “Light-Driven Motion of Liquids on a Photoresponsive Surface,” Science, Vol. 288, pp. 1624-1626.
[102] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, C. J. Kim, 2002, “Electrowetting and Electrowetting-on-dielectric for Microscale Liquid Handling,” Sensors and Actuators A, Vol. 95, pp. 259-268.
[103] A. A. Darhuber and J. P. Valentino, 2003, “Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays,” Journal of Microelectromechanical Systems, Vol. 12, pp. 873-879.