研究生: |
盧佳崴 Lu, Jia-Wei |
---|---|
論文名稱: |
新型主動式補償液靜壓軸承設計及實驗驗證 A Novel Design of Pressure-sense-compensating Hydrostatic Bearing and Experimental Verification |
指導教授: |
宋震國
Sung, Cheng-Kuo |
口試委員: |
陳明飛
康淵 馮展華 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 液靜壓軸承、主動式補償、剛性、承載力 |
外文關鍵詞: | Hydrostatic bearing, pressure-sensing compensation, stiffness, loading |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一種新型主動式節流補償液靜壓軸承設計,探討設計參數及性能參數間的關係,發展具有高剛性之液靜壓軸承。液靜壓軸承經常被使用在大型之精密加工機與高承載的機器。其中,節流器的型式影響軸承的表現甚巨,而主動式補償節流器與固定式節流器相比,有較佳的軸承剛性。本文的新式主動式補償軸承設計,提出理論上初始剛性無限大之軸承節流裝置,並與油腔整合,改善傳統液靜壓軸承系統連接潤滑油管路再搭配節流器之作動延遲問題。並以實驗驗證來證明其性能表現。
本研究主要透過理論模型以及實驗測試,探討新型軸承設計中,補償元件等效彈性係數、壓力比及節流的補償參數,在其他相同固定條件下,對剛性、承載力等特性的影響,並以此了解設計參數與性能參數之間的關係。另外,探討本文設計之自補償式節流器與傳統節流器的性能差異,並了解其實際可行性與優缺點。
以液靜壓的流體理論為基礎,本文將設計理論及實驗結果進行比較,探討此一新型主動補償式軸承的性能特徵及表現。由理論可知主動式補償節流軸承的承載力與補償能力比傳統式節流來得好,經由實驗測試所得到的結果可做此驗證,並比對理論預測與實際間的誤差。
關鍵字:液靜壓軸承、主動式補償、剛性、承載力
參考文獻
[1] 黃華志, 2009 , “液靜壓軸承技術清大演講,” 工研院機械所.
[2] 王寶沛、翟鵬等,2007, “液體靜壓軸承動態特性的探討,”液壓與氣動,第8期.
[3] Mori H. and Yabe H., 1963, “A theoretical investigation on hydrostatic bearing,” JSME Vol. 6, N0.22, p.354-363.
[4] EI-Sherbiny M., Salam F., EI-Hefnawy N., 1984, “Optimum design of hydrostatic journal bearing: I. Maximum load capacity,” Trib. Int.;17(3):155-161.
[5] EI-Sherbiny M., Salam F., EI-Hefnawy N., 1984, “Optimum design of hydrostatic journal bearing: II. Minimum power,” Trib. Int.;17(3):162-166.
[6] Stanley, B.M., and Alfred, M.L., 1961, “The Effect of the Method of Compensation on Hydrostatic Bearing Stiffness,” Journal of Basic Engineering, p.179-187.
[7] Ling, T. S., 1962, “On the optimization of the stiffness of externally pressurized bearings,” Trans. ASME. J. Basic Eng.; 84:119-122.
[8] O’Donoghue, J. P., 1972, “Parallel orifice and capillary control for hydrostatic journal bearings,” Tribology; 5:81-82.
[9] S. C. Sharma, S. C. Jain, R. Sinhasan and R. Shalia, 1995, “Comparative study of the performance of six-pocket and four-pocket hydrostatic-hybrid flexible journal bearings,” Tribology International, Vol. 28, pp. 531-539.
[10] S. C. Sharma, R. Sinhasan, S. C. Jain, N. Singh and S. K. Singh, 1998, “Performance of hydrostatic/hybrid journal bearings with unconventional recess geometries,” Tribology Transactions, Vol.41, pp.375 – 381.
[11] Y. Kang, P. C. Shen, C. H. Chen, Y. P. Chang and H. H. Lee, 2007, “Modified determination of fluid resistance for membrane-type restrictors,” Industrial Lubrication and Tribology, pp.123-131.
[12] Mohsin, M.E., “The Use of Controlled Restrictors for Compensating Hydrostatic Bearing,” Third International Conference on Machine Tool Design Research, p.129-424,1963
[13] Mayer, J. E. and Shaw, M. C., 1963, “Characteristics of Externally Pressurized Bearing Having Variable External Flow Restrictors,” ASEM Journal of Basic Engineering, Vol. 85, p.291-.
[14] Rowe, W. B. and O’Donoghue, J.P., 1970, “Diaphragm Valves for Controlling Opposed Pad Hydrostatic Bearing,” Proc. I. E. Tribology.
[15] W. B. Rowe, 1983, “Hydrostatic and hybrid bearing design”, Butterworths pressed.
[16] Moris, S. A., 1972, “Passively and Actively Controlled Externally Pressurized Oil-film Bearing, ” Trans. ASME, Ser. F, Vol. 94,.
[17] Osumi T., Mori H., Ikeuchi K., 1985, “Effects of stabilizer on initial response of self controlled externally pressurized bearings,” Trans. JSLE;20:651-657.
[18] Pande, S. S., Somasundaram S., 1979 ,“Analysis of a four-pocket hydrostatic journal bearing with a position-sensing variable restrictor,” Wear; 54:331-341.
[19] Yoshimoto S., Anno Y., Amari K., 1990, “Static characteristics of hydrostatic journal bearing with a self controlled restrictor employing floating disk,” Trans. JSLE, 56:3360-3367.
[20] Yoshimoto S., Kikuchi K., 1999, “Step response characteristics of hydrostatic journal bearings with self-controlled restrictor employing floating disk,” Trans. Int., 121(4):315-320.
[21] Robert Schoenfold, 2001, “Regulator for adjusting the fluid flow in a hydrostatic or aerostatic device.” US Patent number 6276491B1.
[22] N. Singh, S. C. Sharma, S. C. Jain and S. S. Reddy, 2004, “Performance of membrane compensated multirecess hydrostatic hybrid flexible journal bearing system considering various recess shapes,” Tribology International,Vol. 37, pp.11-24.
[23] Kotilainen M. S., Slocum A. H., 2001, “Manufacturing of cast monolithic hydrostatic journal bearings.” Precision Eng. 25:235-244.
[24] N.R. Kane, J. Sihler and A.H. Slocum, 2003, “A hydrostatic rotary bearing with angled surface self-compensation,” Prec. Eng. 27, pp. 125–139.
[25] 研討會資料, Hyprostatik.
[26] Kotilainen M. S., Slocum A. H., 2000, “Design and manufacturing of modular self-compensating hydrostatic journal bearings,” Ph.D. Thesis, MIT, Dept. of Mechanical Engineering.
[27] Velednitski VM, Push VE, Schimanovich MA., 1980, “Static load characteristics of a hydrostatic radial bearing without draining grooves and with opposed acting restrictors.” Mach Tool, 51(10):8–11.
[28] Slocum A. H., 1992, “Precision Machine Design.”
[29] William A. G., 1980, “Fluid Film Lubrication.”
[30] 張善鐘, 1993, “精密儀器結構設計手冊.”
[31] N. Tully, 1977, “Static and Dynamic Performance of an Infinite Stiffness Hydrostatic Thrust Bearing,” Trans. of ASME.
[32] Raimondi, A. A., Boyd, J., 1957, “An analysis of orifice and capillary compensated hydrostatic journal bearing,” Lubr. Eng. 13(1):28-37.