簡易檢索 / 詳目顯示

研究生: 黃鈺程
Huang, Yu-Cheng
論文名稱: CMOS MEMS熱電型紅外線感測器之性能提升
Performance Enhancement of CMOS MEMS Thermoelectric Infrared Sensor
指導教授: 方維倫
Fang, Wei-Leun
口試委員: 李昇憲
Li, Sheng-Shian
賴梅鳳
Lai, Mei-Feng
蔡明翰
Tsai, Ming-Han
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 110
中文關鍵詞: CMOS MEMS熱電型紅外線感測器熱電偶檢測比響應度
外文關鍵詞: CMOS MEMS thermoelectric infrared sensor, thermocouple, Detectivity, Responsivity
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 紅外線感測器可應用於各種遠距溫度量測、熱點偵測以及紅外線熱影像等,特別是受到目前全球疫情的影響,使得體溫量測以及熱影像的需求量大為增加,一年內的年均複合成長率高達百分之二十,顯示紅外線感測器的市場價值。因此本次研究中,使用商用的標準CMOS製程平台(TSMC 0.18 μm 1P6M CMOS platform)來設計熱電型紅外線感測元件,而利用製程平台內的二氧化矽層作為紅外線的吸收材料,於8至14微米的波段中具有較高的吸收率,並依照不同的產品應用需求提出兩種尺寸的感測結構設計,同時也因為摻雜後的多晶矽之熱電偶於感測結構內所佔比例較低的因素,可進行熱電偶鋪設的調整,如鋪設比例以及寬度等,在不改變感測結構設計的前提下進行,且因熱電偶的幾何尺寸會影響元件的電阻值,而電阻值大小會影響感測器主要的雜訊量(熱雜訊),因此透過熱電偶的調整可提升感測器的檢測比,並且為了解決較小的感測面積電壓輸出不足的問題,也提出了新穎的結構設計,大幅增加結構的熱阻,提升了感測器的輸出。並根據最終的實驗結果得知,透過更改熱電偶鋪設時的寬度,在0.5%的些微響應度損失下,可增加28.7%的檢測比(訊噪比),而透過新穎的結構設計,則是可同時增加146%的響應度以及檢測比,達成紅外線感測器的性能提升。


    Thermal Infrared sensor can be applied to remote temperature measurement, hot spot detection, and thermal imager. Due to the global infectious disease, the IR sensor market is rapidly growing in the demand of body temperature measurement and thermal imager. The 20% CAGR (Compound Annual Growth Rate) shows the market is promising. This study employed the TSMC 0.18 μm 1P6M CMOS platform to implement and enhance the thermoelectric infrared sensor with the benefit of higher absorptance in the range of 8 to 14 μm infrared light. Besides, there are two sensing structure designs presented for different further application. Since the proportion of thermocouple in the sensing structure was relatively low, adjusting the dimension of thermocouple only slightly changed the total thermal conduction with the identical sensing structure. Because the total electrical resistance is dominant by sheet resistance, revising the pattern of thermocouple can enhance the detectivity. Although, shrinking single sensor size can bring to higher spatial resolution for thermal imaging, the sensor output voltage is decreased in line with the sensing area reduction. Thus, this study also attempted to propose a novel structure design for responsivity enhancement. Finally, the results shows that the 28.7% detectivity improvement only sacrificed 0.5% responsivity by thermocouple adjustment, and 146% responsivity and detectivity improved by the novel structure design.

    摘要-----I Abstract-----II 誌謝-----III 目錄-----V 圖目錄-----IX 表目錄-----XIII 第一章 緒論-----1 1-1 前言-----1 1-2 研究動機-----3 1-3 文獻回顧-----4 1-3-1 CMOS MEMS製程-----4 1-3-2 紅外線感測器-----6 1-3-3 熱電型紅外線感測器-----10 1-4 全文架構-----15 第二章 元件感測原理-----28 2-1 紅外線熱輻射理論-----28 2-1-1 黑體輻射理論-----28 2-1-2 放射率-----30 2-1-3 維恩位移定律-----31 2-2 熱電效應-----31 2-2-1 賽貝克效應-----32 2-2-2 熱電優值-----33 2-3 集成元素法-----35 2-4 紅外線感測規格-----37 2-4-1 響應度-----37 2-4-2 反應時間-----38 2-4-3 雜訊等效功率-----39 2-4-4 檢測比-----40 2-4-5 感測優值-----41 第三章 元件設計與檢測比提升-----47 3-1 設計考量-----47 3-2 元件設計-----48 3-2-1 感測結構-----49 3-2-2 熱電偶-----50 3-2-3 熱電偶鋪設-----51 3-3 理論與模擬分析-----53 3-4 製程結果與量測分析-----55 3-4-1 元件製程流程-----56 3-4-2 製程與結果討論-----57 3-5 感測器性能量測-----59 3-5-1 響應度量測-----60 3-5-2 電阻值量測與檢測比-----62 3-5-3 反應時間量測-----63 3-6 小結-----64 第四章 響應度提升-----77 4-1 設計考量-----77 4-2 元件設計-----78 4-3 理論與模擬分析-----79 4-4 製程結果與量測分析-----80 4-4-1 製程流程-----80 4-4-2 製程結果與討論-----81 4-4-3 元件形貌量測-----83 4-4-4 表面形貌量測-----84 4-5 感測器性能量測-----84 4-5-1 響應度量測-----84 4-5-2 壓力響應度量測-----85 4-6 小結-----86 第五章 結論與未來工作-----97 5-1 研究成果與結論-----97 5-2 未來工作-----98 5-2-1 材料參數萃取-----98 5-2-2 量測優化-----100 5-2-3 紅外光吸收效果探討-----101 參考文獻-----104

    [1]Apple Inc., https://www.apple.com/
    [2]Texas Instrument Inc., https://www.ti.com/
    [3]Yole Developpement, http://www.yole.fr/
    [4]Melexis, https://www.melexis.com/
    [5]Panasonic, https://industrial.panasonic.com/
    [6]H. Qu, “CMOS MEMS Fabrication Technologies and Devices,” micromachines, 7, pp. 1-21, 2016.
    [7]J. H. Smith, Stephen Montague, Jeffry J. Sniegowski, James R. Murray, Ronald P. Manginell, Paul J. McWhorter, and Robert J. Huber, “Characterization of the embedded micromechanical device approach to the monolithic integration of MEMS with CMOS,” Micromachining and Microfabrication Process Technology II, Austin, TX, pp. 306-314, 1996.
    [8]W. Kuehnel, and S. Sherman, “A surface micromachined silicon accelerometer with on-chip detection circuitry,” Sensors and Actuators A: Physical, 45, pp. 7-16, 1994.
    [9]W. C. Chen, W. Fang, and S.S. Li, “A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits,” J. Micromech. Microeng., 21, 065012, 2011.
    [10]G. K. Fedder, “CMOS-based sensors,” IEEE Sensors Conference, Irvine, CA, Oct., pp. 125-128, 2005.
    [11]行政院國家科學委員會精密儀器發展中心出版, Instruments Today, 71, 44, 1992.
    [12]B. Kebede, R. A. Coutu, Jr., and L. Starman, “Optimal microelectromechanical systems (MEMS) device for achieving high pyroelectric response of AlN,” Micromachining and Microfabrication Process Technology XIX, 8973, 897301, 2014.
    [13]F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-Based Uncooled Infrared Bolometer Arrays–A Review,” The International Society for Optical Engineering, 2008.
    [14]D. Xu, Y. Wang, B. Xiong, and T. Lin, “MEMS-based thermoelectric infrared sensors: A review,” Front. Mech. Eng, 12, 557–566 , 2017.
    [15]Omron, www.omron.com/
    [16]A. Roncaglia, F. Mancarella, and G.C. Cardinali, “CMOS-compatible fabrication of thermopiles with high sensitivity in the 3–5μm atmospheric window,” Sensors and Actuators B: Chemical, 125, pp. 214–223, 2007.
    [17]J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett., 96, 251104, 2010.
    [18]C. N. Chen, W. C. Huang, C. C. Chen and S. H. Shen, “A novel CMOS-compatible polysilicon/titanium thermopile,” 2009 IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, Tainan, pp. 158-163, 2009.
    [19]D. Xu, Bin Xiong, and Yuelin Wang,” Self-aligned thermoelectric infrared sensors with post-CMOS micromachining,” IEEE Electron Device Letters, vol.31, pp. 512-514, 2010.
    [20]S. M. Hu, “Infrared absorption spectra of SiO2 precipitates of various shapes in silicon: calculated and experimental,” Journal of Applied physics, Volume 51, Issue 11, 5945 ,1980.
    [21]C. G. Mattsson, G. Thungström, K. Bertilsson, H. Nilsson, and H. Martin, “Design of a Micromachined Thermopile Infrared Sensor With a Self-Supported,” IEEE SENSORS JOURNAL, VOL. 8, NO. 12, 2008.
    [22]T. W. Shen, Y. C. Lee, K. C. Chang, and W. Fang, “Responsivity enhancement of CMOS-MEMS thermoelectric infrared sensor by heat transduction absorber design,” IEEE MEMS, pp. 29-32, 2018.
    [23]M. Muller, W. Budde, R. Gottfried-Gottfried, A. H-Ubel, R. Jahme and H. Kuck, “A Thermoelectric Infrared Radiation Sensor With Monolithically Integrated Amplifier Stage And Temperature Sensor,” Proc. 8th Int. Conf. on Solid-State Sensors and Actuators, Stockholm, Sweden, pp. 640-643, 1995.
    [24]Sarro P M, “Integrated silicon thermopile infrared detectors”, PhD Thesis, Delft Technical University, 1987.
    [25]D. Xu, E. Jing, B. Xiong and Y. Wang, “Wafer-Level Vacuum Packaging of Micromachined Thermoelectric IR Sensors,” IEEE Transactions on Advanced Packaging, pp. 904-911, 2010.
    [26]E. Socher, O. Bochobza-Degani, and Y. Nemirovsky, “A novel spiral CMOS compatible micromachined thermoelectric IR microsensor,” Journal of Micromechanics and Microengineering, vol.11, pp. 574-576, 2001.
    [27]J. Tanaka, M. Shiozaki, F. Aita, T. Seki, and M. Oba, “Thermopile infrared array sensor for human detector application,” IEEE MEMS, San Francisco, CA, January, pp.1213-1216, 2014.
    [28]張凱傑, “CMOS-MEMS 熱電式紅外線感測器設計與實現,” 清華大學碩士論文, 2016.
    [29]R. Lenggenhager, D. Jaeggi, P. Malcovati, H. Duran, H. Baltes, and E. Doering, “CMOS Membrane Infrared Sensors and Improved TMAHW Etchant,” IEEE International Electron Devices Meeting, San Francisco, CA, December, pp. 531-534, 1994.
    [30]A. Merlos, M. Acero, M. H. Bao, J. Bausells and J. Esteve, “TMAH/IPA anisotropic etching characteristics,” Sensors and Actuators A, 37-38 131-743, 1993.
    [31]R. Hopper, S. Ali, M. Chowdhury, S. Boual1, A. De Luca, J.W. Gardner, and F. Udrea, “A CMOS-MEMS Thermopile with an Integrated Temperature Sensing Diode for Mid-IR Thermometry,” Eurosensors, pp. 1127-1130, 2014.
    [32]P. S. Lin, Y. Wang, M. C. Cheng, Y. C. Chen, Y. C. Huang, and W. Fang, “Hybrid Si Etching for Performance Enhancement of the Atmospheric CMOS MEMS Infrared Sensor,” IEEE SENSORS, pp. 1-4, 2020.
    [33]M. J. de Oliveira, Equilibrium Thermodynamics, 2nd Ed., Berlin Heidelberg, Springer, 2017.
    [34]L. A. Klein, Millimeter Wave and Infrared Multisensor Design and Signal Processing, Artech House Inc., 1997.
    [35]C. Kittel, Solid State Physics, 8th Ed., Hoboken, N.J., John Wiley & Sons, Inc., 2004.
    [36]S. Middelhoek, Silicon sensors, London, San Diego, Academic press, 1989.
    [37]J. Schieferdecker, R. Quad, E. Holzenkämpfer, and M. Schulze, “Infrared thermopile sensors with high sensitivity and very low temperature coefficient,” Sensors and Actuators A: Physical, 47, pp. 422-427, 1995.
    [38]H. Budzier and Gerald Gerlach, Thermal infrared sensors, 1st Ed., Dresden University of Technology, Germany, 2011.
    [39]D.I. Crecraft and S. Gergely, 2 - Signals and signal processing, Editor(s): D.I. Crecraft, S. Gergely, Analog Electronics, Butterworth-Heinemann, pp. 13-71, 2002.
    [40]NEWS, https://www.nwengineeringllc.com/.
    [41]沈廷威,“設計與實現性能提升之CMOS-MEMS熱電式紅外線感測器,”清華大學碩士論文, 2018.

    QR CODE