研究生: |
王冠茹 Wang, Guan-Ru |
---|---|
論文名稱: |
利用多面體的氧化亞銅奈米晶體進行光催化的氧化環化硫代醯胺之反應 Photocatalytic Oxidative Cyclization of Aromatic Thioamides Catalyzed by Cu2O Rhombic Dodecahedra |
指導教授: |
黃暄益
Huang, Hsuan-Yi |
口試委員: |
莊敬
Chuang, Gary-Jing 吳彥谷 Wu, Yen-Ku |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 78 |
中文關鍵詞: | 光催化 、材料 、有機合成 、氧化亞銅 |
外文關鍵詞: | materials, organic synthesis, copper oxide, photocatalysis |
相關次數: | 點閱:40 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光催化的有機氧化反應是一種新穎且綠色的合成策略。本研究利用氧化亞銅奈米晶體作為光催化劑,用於硫代醯胺的氧化環化反應。在氧化亞銅材料具備合成容易、合成時間短、合成成本低等優點。控制實驗中可知光源、氧氣及光催化劑對於反應的重要性,並且在最佳條件篩選下,四氫呋喃為最佳溶劑。當用具不同晶面的氧化亞銅立方體、八面體以及菱形十二面體奈米晶體為催化劑,結果具{110}面的菱形十二面體氧化亞銅奈米晶體的催化效果最好,產率可達 94%。我們也將該實驗條件用於帶有不同官能基的硫代醯胺進行氧化環化反應,發現不同官能基團都可以有不錯的產率。最後根據自由基捕捉實驗以及 EPR 實驗提出可能的機制。
Catalytic organic oxidation through photocatalysis represents a novel and environmentally friendly synthetic strategy. In this study, copper oxide nanocrystals were employed as the photocatalyst for the oxidative cyclization of thioamides. The advantages of copper oxide materials include ease of synthesis, short synthesis time, and low synthesis cost. Control experiments revealed the crucial role of light source, oxygen, and photocatalyst in the reaction. Under the optimized conditions, tetrahydrofuran was identified as the best solvent. When using copper oxide cubes, octahedra, and rhombic dodecahedra as catalysts, it was found that rhombic dodecahedra exhibited the best catalytic performance, achieving a yield of up to 94%. The experimental conditions were also applied to oxidative cyclization reactions of thioamides with different functional groups, demonstrating promising yields for various functional groups. Finally, a possible mechanism was proposed based on free radical capture experiments and electron paramagnetic resonance (EPR) experiments. This study highlights the innovative and green nature of photocatalytic organic oxidation reactions and establishes a foundation for further development of environmentally friendly synthetic strategies and applications of copper oxide nanocrystals as efficient photocatalysts.
1. Zhang, Y.; Deng, B.; Zhang, T.; Gao, D.; Xu, A.-W. Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity. J. Phys. Chem. C 2010, 114, 5073−5079.
2. Kanazawa, C.; Kamijo, S.; Yamamoto, Y. Synthesis of Imidazoles through the Copper-Catalyzed Cross-Cycloaddition between Two Different Isocyanides. J. Am. Chem. Soc. 2006, 128, 10662−10663.
3. Xu, Y.; Wang, H.; Yu, Y.; Tian, L.; Zhao, W.; Zhang, B. Cu2O Nanocrystals: Surfactant-Free Room-Temperature Morphology-Modulated Synthesis and ShapeDependent Heterogeneous Organic Catalytic Activities. J. Phys. Chem. C 2011, 115, 15288−15296.
4. Zhang, S.; Yan, J.; Yang, S.; Xu, Y.; Cai, X.; Li, X.; Zhang, X.; Peng, F.; Fang, Y., Electrodeposition of Cu2O/g-C3N4 heterojunction film on an FTO substrate for enhancing visible light photoelectrochemical water splitting. Chinese. J. Catal. 2017, 38, 365−371.
5. Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors. Chem. Mater. 2006, 18, 867−871.
6. Liu, Y.; Zhu, J.; Cai, L.; Yao, Z.; Duan, C.; Zhao, Z.; Zhao, C.; Mai, W. SolutionProcessed High-Quality Cu2O Thin Films as Hole Transport Layers for Pushing the Conversion Efficiency Limit of Cu2O/Si Heterojunction Solar Cells. Sol. RRL 2020, 4, 1900339.
7. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134, 1261−1267.
8. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15, 2155−2160.
9. Chu, C.-Y.; Huang, M. H. Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5, 15116−15123.
10. Chen, B.-H.; Kumar, G.; Wei, Y.-J.; Ma, H.-H.; Kao, J.-C.; Chou, P.-J.; Chuang, Y.-C.; Chen, I.-C.; Chou, J.-P.; Lo, Y.-C.; Huang, M. H. Experimental Revelation of Surface and Bulk Lattices in Faceted Cu2O Crystals. Small 2023, 19, 2303491.
11. Wang, K.; Bi, X.; Xing, S.; Liao, P.; Fang, Z.; Meng, X.; Zhang, Q.; Liu, Q.; Ji, Y. Cu2O Acting as a Robust Catalyst in CuAAC Reactions: Water is the Required Medium. Green Chem. 2011, 13, 562−565.
12. Song, Q.; Feng, Q.; Yang, K. Synthesis of Primary Amides via Copper-Catalyzed Aerobic Decarboxylative Ammoxidation of Phenylacetic Acids and α‑Hydroxyphenylacetic Acids with Ammonia in Water. Org. Lett. 2014, 16, 624−627.
13. Zou, X.; Zheng, L.; Zhuo, X.; Zhong, Y.; Wu, Y.; Yang, B.; He, Q.; Guo, W. CopperPromoted Aerobic Oxidative 3+2 Cycloaddition Reactions of N,N-Disubstituted Hydrazines with Alkynoates: Access to Substituted Pyrazoles. J. Org. Chem. 2023, 88, 2190−2206.
14. Chanda, K.; Rej, S.; Huang, M. H. Investigation of Facet Effects on the Catalytic Activity of Cu2O Nanocrystals for Efficient Regioselective Synthesis of 3,5-Disubstituted Isoxazoles. Nanoscale 2013, 5, 12494−12501.
15. Tsai, H.-Y.; Madasu, M.; Huang, M. H. Polyhedral Cu2O Crystals for Diverse Aryl Alkyne Hydroboration Reactions. Chem. Eur. J. 2019, 25, 1300−1303.
16. Su, Z.-H.; Hsieh, M.-H.; Chen, Z.-L.; Dai, W.-T.; Wu, E.-T.; Huang, M. H. Aqueous Phase Photocatalytic Hydroxylation of Arylboronic Acids Using Polyhedral Cu2O Crystals. Chem. Mater. 2023, 35, 2782−2789.
17. Iizawa, Y.; Okonogi, K.; Hayashi, R.; Iwahi, T.; Yamazaki, T.; Imada. A. Therapeutic Effect of Cefozopran (SCE-2787), a New Parenteral Cephalosporin, against Experimental Infections in Mice. Antimicrob. Agents Chemother. 1993, 31, 100–105.
18. Pragathi, Y. J.; Screenivasulu, R.; Veronica, D.; Raju, R. R. Design, Synthesis, and Biological Evaluation of 1,2,4-Thiadiazole-1,2,4-Triazole Derivatives Bearing Amide Functionality as Anticancer Agents. Arab J Sci Eng. 2021, 46, 225−232.
19. Perlovich, G. L.; Proshin, A. N.; Volkova, T. V.; Petrova, L. N.; Bachurin, S. O. Novel 1,2,4-Thiadiazole Derivatives as Potent Neuroprotectors: Approach to Creation of Bioavailable Drugs. Mol. Pharm. 2012, 9, 2156–2167.
20. Gurjar, A. S.; Andrisano, V.; Simone, A. D.; Velingkar, V. S. Design, Synthesis, in Silico and in vitro Screening of 1,2,4-Thiadiazole Analogues as Non-peptide Inhibitors of Beta-secretase. Bioorg. Chem. 2014, 57, 90–98.
21. Fawzi, A. B.; Macdonald, D.; Benbow, L. L.; SmithTorhan, A.; Zhang, H. T.; Weig, B. C.; Ho, G.; Tulshian, D.; Linder, M. E.; Graziano, M. P. SCH-202676: An Allosteric Modulator of Both Agonist and Antagonist Binding to G Protein-coupled Receptors. Mol. Pharmacol. 2001, 59, 30−37.
22. Hartmann, M.; Decking, U. K.; Schrader, J. Cardioprotective Actions of KC 12291 II. Delaying Na+ Overload in Ischemia Improves Cardiac Function and Energy Status in Reperfusion. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1998, 358, 554–560.
23. Mariappan, A.; Rajaguru, K.; Chola, N. M.; Muthusubramanian, S.; Bhuvanesh, N. Hypervalent Iodine(III) Mediated Synthesis of 3-Substituted 5-Amino-1,2,4-thiadiazoles through Intramolecular Oxidative S−N Bond Formation. J. Org. Chem. 2016, 81, 6573–6579.
24. Yang, L.; Song, L.; Tang, S.; Li, L.; Li, H.; Yuan, B.; Yang, G. Co-Catalyzed Intramolecular S-N Bond Formation in Water for 1,2-Benzisothiazol-3(2H)-ones and 1,2,4-Thiadiazoles Synthesis. Eur. J. Org. Chem. 2019, 2019, 1281–1285.
25. Jatangi, N.; Tumula, N.; Palakodety, R. K.; Nakka, M. I2‑Mediated Oxidative C−N and N−S Bond Formation in Water: A Metal-Free Synthesis of 4,5-Disubstituted/NFused 3‑Amino-1,2,4-triazoles and 3‑Substituted 5‑Amino-1,2,4-thiadiazoles. J. Org. Chem. 2018, 83, 5715−5723.
26. Li, S.; Li, L.; Li, Y.; Dai, L.; Liu, C.; Liu, Y.; Li, J.; Lv, J.; Li, P.; Wang, B. Fully Conjugated Donor−Acceptor Covalent Organic Frameworks for Photocatalytic Oxidative Amine Coupling and Thioamide Cyclization. ACS Catal. 2020, 10, 8717−8726.
27. Yuan, J.; Xia, Q.; Zhu, W.; Wu, C.; Wang, B. X.; Liu, B.; Yang, X.; Xu, Y.; Xu, H. Sunlight-Driven Synthesis of 1,2,4-Thiadiazoles via Oxidative Construction of a Nitrogen-Sulfur Bond Catalyzed by a Reusable Covalent Organic Framework. ChemPhotoChem. 2020, 4, 445–450.
28. Liu, Y.; Jiang, X.; Chen, L.; Cui, Y.; Li, Q.-Y.; Zhao, X.; Han, X.; Zheng, Y.-C.; Wang, X.-J. Rational Design of a Phenothiazine-based Donor–Acceptor Covalent Organic Framework for Enhanced Photocatalytic Oxidative Coupling of Amines and Cyclization of Thioamides. J. Mater. Chem. A. 2023, 11, 1208–1215.