簡易檢索 / 詳目顯示

研究生: 石承浩
Cheng-Hau Shih
論文名稱: 論Sturm序列和應用
On Sturm Sequence and Application
指導教授: 夏宗匯
Chung-Wei Ha
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2004
畢業學年度: 93
語文別: 英文
論文頁數: 14
中文關鍵詞: 史頓序列特徵根
外文關鍵詞: Sturm, sequence, eigenvalue
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在尋找實係數多項式的根,和尋找tridiagonal matrix的特徵根
    的問題上,Sturm定理提供了清楚而又簡單的處理方法.它不只完整
    且兼具實用性.在這裡我們廣泛的討論了它各種的觀點並且提供了一部份的逆定理.


    Sturm theorem provides a classical method to lacate the
    roots of a real polynomial as well as the eigenvalues of a tridiagonal matrix. It exhibits an admirable simplicity
    in its proof and an easy manner in application. Various
    aspects of Sturm theorem are presented in this thesis. A
    partial answer is obtained to the initial object to find
    sufficint conditions for Sturm sequence.

    Abstract Chapter 1. Introduction 1 Chapter 2. Sturm Method 2 Chapter 3. Location of eigenvalues of Hermitian matrices 7 Chapter 4. Some further development 12 Bibliography

    [1]Chen, M. and Xia, B.C., An explicit criterion for
    the number of roots polynomial in an interval.
    Sichuan-Daxue-Xuebao, 35 (1998), 317-322.
    [2]Franklin, J.N., Matrix Theory. Prentice-Hall, N.J. 1968.
    [3]Gleyse, B., Sturm sequences and the number of zeros of
    a real polynomial in the unit disk: numerical
    computation. Appl. Math. Lett. 10 (1997), 123-127.
    [4]Gohberg, I. and Goldberg, S., Counting negative
    eigenvalues analogue of a Hilbert-Schmidt operator
    via sign changes of a determinant. Integral Equation
    Operator Theory, 14 (1991), 92-104.
    [5]Goutl, R.J., Hoskins, R.K., Milner, J.A., and
    Pratt, J.A., Computational Methods in Linear Algebra.
    Stanley Thornes, London, 1974.
    [6]Greenberg, L. and Babuvska, I., A continuous analogue
    of Sturm sequence in the context of Sturm-Liouville
    equations. SIAM J. Numer. Anal. 26 (1989), 920-945.
    [7]Hammarling, S.J., Latent Roots and Latent Vectors,
    University of Torento press, 1970.
    [8]Pedersen, P., Multivariate Sturm theory, Lecture Notes
    in Comput. Sci., 539, 318-332, 1991.
    [9]Simion, R., A multi-indexed Sturm sequence of polynomials
    and unimodality of certain combinatorial sequences.
    J. Combin. Theotr Ser. A 36 (1984), 15-22.
    [10]Thomas, J.M., Sturm's for multiple roots. Nat. Math.
    Mag. 15 (1941), 391-394.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE