研究生: |
石承浩 Cheng-Hau Shih |
---|---|
論文名稱: |
論Sturm序列和應用 On Sturm Sequence and Application |
指導教授: |
夏宗匯
Chung-Wei Ha |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 14 |
中文關鍵詞: | 史頓 、序列 、特徵根 |
外文關鍵詞: | Sturm, sequence, eigenvalue |
相關次數: | 點閱:63 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在尋找實係數多項式的根,和尋找tridiagonal matrix的特徵根
的問題上,Sturm定理提供了清楚而又簡單的處理方法.它不只完整
且兼具實用性.在這裡我們廣泛的討論了它各種的觀點並且提供了一部份的逆定理.
Sturm theorem provides a classical method to lacate the
roots of a real polynomial as well as the eigenvalues of a tridiagonal matrix. It exhibits an admirable simplicity
in its proof and an easy manner in application. Various
aspects of Sturm theorem are presented in this thesis. A
partial answer is obtained to the initial object to find
sufficint conditions for Sturm sequence.
[1]Chen, M. and Xia, B.C., An explicit criterion for
the number of roots polynomial in an interval.
Sichuan-Daxue-Xuebao, 35 (1998), 317-322.
[2]Franklin, J.N., Matrix Theory. Prentice-Hall, N.J. 1968.
[3]Gleyse, B., Sturm sequences and the number of zeros of
a real polynomial in the unit disk: numerical
computation. Appl. Math. Lett. 10 (1997), 123-127.
[4]Gohberg, I. and Goldberg, S., Counting negative
eigenvalues analogue of a Hilbert-Schmidt operator
via sign changes of a determinant. Integral Equation
Operator Theory, 14 (1991), 92-104.
[5]Goutl, R.J., Hoskins, R.K., Milner, J.A., and
Pratt, J.A., Computational Methods in Linear Algebra.
Stanley Thornes, London, 1974.
[6]Greenberg, L. and Babuvska, I., A continuous analogue
of Sturm sequence in the context of Sturm-Liouville
equations. SIAM J. Numer. Anal. 26 (1989), 920-945.
[7]Hammarling, S.J., Latent Roots and Latent Vectors,
University of Torento press, 1970.
[8]Pedersen, P., Multivariate Sturm theory, Lecture Notes
in Comput. Sci., 539, 318-332, 1991.
[9]Simion, R., A multi-indexed Sturm sequence of polynomials
and unimodality of certain combinatorial sequences.
J. Combin. Theotr Ser. A 36 (1984), 15-22.
[10]Thomas, J.M., Sturm's for multiple roots. Nat. Math.
Mag. 15 (1941), 391-394.