簡易檢索 / 詳目顯示

研究生: 楊郁仁
Yang, Yu-Ren
論文名稱: 含硝酸鋁與尿素溶液燃燒合成之氧化鋁鈍化層之PERC單晶矽太陽能電池
Monocrystalline PERC Silicon Solar Cell with Aluminum Oxide Passivation Layer Formed by Al(NO_3 )_3/CO(NH_2 )_2 Aqueous Combustion Synthesis
指導教授: 王立康
Wang, Li-Karn
口試委員: 李明昌
陳昇暉
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 88
中文關鍵詞: 太陽能電池硝酸鋁尿素溶液燃燒合成
外文關鍵詞: solar cell, aluminum nitrate, urea, aqueous combustion synthesis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近能源議題在全世界吵得沸沸揚揚,像是核能也是一個非常有爭議的能源議題,也很多人說要利用再生能源取代核能發電,而太陽能電池也是再生能源之一,所以如何降低太陽能電池的成本也是非常具有探討價值的議題,而本實驗為研究製作PERC太陽能電池,其中鈍化層為PERC太陽能電池一個很關鍵的部分,因此我們會對於如何沉積鈍化層進行研究。
    本實驗使用硝酸鋁與尿素形成前驅物溶液,這兩種物質對環境危害較小,之後以溶液燃燒合成的方式進行氧化鋁之沉積,並在退火後形成氧化鋁鈍化層。此方法相較於使用真空設備沉積氧化鋁具有成本優勢,這種前驅物之溶液燃燒合成反應所產生之副產物為水、氮氣、二氧化碳、氧氣,也是對自然環境較無負擔之副產物。而我們會對前驅物的濃度跟比例、燃燒合成的時間與溫度、退火的時間與溫度進行測試,找出濃度為3 mM、硝酸鋁與尿素比為1:2.5、燃燒合成為350度10分鐘、退火為700度2分鐘最佳。接著沉積氮化矽保護氧化鋁薄膜,再進行第二次退火以400度10分鐘為最佳。之後利用黃光製程在太陽能電池背後蝕刻柵狀線條後再進行網印與燒結即可完成太陽能電池。之後以TEM測量氧化層厚度,再進行CV量測計算出負電荷密度,最後以最佳參數完成之太陽能電池最高轉換效率達到16.86%,比全面鋁之太陽能電池高了0.40%。


    Recently, energy issues have been intensively discussed globally. For example, nuclear energy is one of controversial issues, due to the potential harm to the environment and mankind. Many people thus hope to use renewable energies as an alternative choice of energy. And one of renewable energy is solar energies. Therefore, how to reduce the cost of solar cells becomes a very important issue for manufacturing cost-effective solar cells. The purpose of the study here is to find environment friendly materials to form passivation layers for PERC solar cells. That is, we will study how to deposit a passivation layer on the rear side of a PERC solar cell.
    In this study, we choose 〖Al(NO〗_3 )_3 and CO(NH_2 )_2 as the precursors because the two substances impose less harm to environment. To make an aluminum oxide film with the two substances, a method of aqueous combustion synthesis is used. This makes feasible a cost-effective deposition process, which compares favorably with the conventional deposition method with vacuum equipment used. After annealed, a passivation layer of AlO_x is successful formed on the rear side of a solar wafer. First, we will test the concentration and ratio of the precursors, the time and temperature of aqueous combustion synthesis, and the annealing time and temperature. Finally, we find out that the concentration is 3 mM, the ratio of 〖Al(NO〗_3 )_3 and CO(NH_2 )_2 is 1:2.5. The best temperature and time of aqueous combustion synthesis are 350°C and 10 minutes, respectively. Annealing the AlO_x film at 700°C for 2 minutes is the best. Subsequently, a silicon nitride layer is deposited on the rear side to protect the aluminum oxide film from the impact of moisture and decay of the film’s property. And then we apply a second-time annealing at 400°C for 10 minutes to repair the defects after deposition of the silicon nitride layer. The thickness of the aluminum oxide layer is measured by TEM, and the negative charge density is calculated by CV measurement. Finally, the highest efficiency of the PERC solar cell is 16.86%, which is 0.40% higher than that of the best Al-BSF solar cell fabricated here.

    目錄 第1章 導論 11 1.1前言 11 1.2文獻回顧 11 1.3研究目的與動機 15 1.4論文架構 15 第2章 原理介紹 16 2.1太陽能電池原理 16 2.1.1 太陽能電池電性參數 16 2.1.2 太陽能電池之串聯電阻與並聯電阻 17 2.1.3 少數載子生命週期 (Minority Carrier Lifetime) 18 2.1.4 背表面電場 (Back Surface Field, BSF) 18 2.1.5 負電荷密度測量 19 2.1.6 量子效率 22 第3章 研究方法與製程規劃 24 3.1實驗架構與元件製作流程 24 3.2實驗步驟 27 3.2.1 Wafer Clean 27 3.2.2 表面粗糙化(Texture) 27 3.2.3 磷擴散(Phosphorous Diffusion) 28 3.2.4 背部拋光(Rear side polishing) 28 3.2.5 晶邊絕緣(Edge Isolation) 28 3.2.6 磷玻璃去除(PSG removal) 29 3.2.7 氧化鋁膜製程 29 3.2.8 退火(Annealing) 29 3.2.9 氮化矽保護層(SiNx) 30 3.2.10 黃光製程(Photo Lithography) 30 3.2.11 蝕刻(etching) 32 3.2.10 網印電極(Screen Printing) 32 3.2.11 共燒結(Co-Firing) 33 3.3儀器介紹 34 第4章 實驗數據與分析 39 4.1溶液燃燒合成氧化鋁薄膜之少數載子生命週期 39 4.1.1不同溶液濃度對於燃燒合成氧化鋁薄膜的影響 39 4.1.2 硝酸鋁與尿素比例對Lifetime之影響 42 4.1.3燃燒合成的溫度對Lifetime的影響 45 4.1.4燃燒合成的時間對Lifetime的影響 47 4.1.5 退火溫度與時間對Lifetime影響 49 4.1.6 少數載子生命週期之衰退 58 4.2 TEM量測 66 4.3 C-V量測 69 4.4 轉換效率 71 4.5 Suns-Voc量測 74 4.6 量子效應量測 79 4.7 BSF與鋁漿厚度 80 第5章 總結 82 第6章 參考文獻 84

    [1] S. R. Wenham and M. A. Green, "Silicon solar cells," Progress in Photovoltaics: Research and Applications, vol. 4, no. 1, pp. 3-33, 1996.
    [2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, no. 5, pp. 676-677, 1954.
    [3] T. Dullweber and J. Schmidt, "Industrial silicon solar cells applying the passivated emitter and rear cell (PERC) concept—A review," IEEE Journal of Photovoltaics, vol. 6, no. 5, pp. 1366-1381, 2016.
    [4] J. Zhao, A. Wang, and M. Green, "24% efficient PERL structure silicon solar cells," IEEE Conference on Photovoltaic Specialists, pp. 333-335, 1990.
    [5] W. Cai et al., "22.2% efficiency n-type PERT solar cell," Energy Procedia, vol. 92, pp. 399-403, 2016.
    [6] P. Verlinden and F. Van De Wiele, "Determination of diffusion length and surface recombination velocity in interdigitated back contact (IBC) solar cells," Solid-State Electronics, vol. 26, no. 11, pp. 1089-1094, 1983.
    [7] S. De Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, "High-efficiency silicon heterojunction solar cells: A review," Green, vol. 2, no. 1, pp. 7-24, 2012.
    [8] J. Nakamura, N. Asano, T. Hieda, C. Okamoto, H. Katayama, and K. Nakamura, "Development of heterojunction back contact Si solar cells," IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1491-1495, 2014.
    [9] H. Yousuf et al., "A review on TOPCon solar cell technology," Current Photovoltaic Research, vol. 9, no. 3, pp. 75-83, 2021.
    [10] O. Von Roos, "A simple theory of back surface field (BSF) solar cells," Journal of Applied Physics, vol. 49, no. 6, pp. 3503-3511, 1978.
    [11] A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, "22.8% efficient silicon solar cell," Applied Physics Letters, vol. 55, no. 13, pp. 1363-1365, 1989.
    [12] S. Meier, S. Wasmer, A. Fell, N. Wöhrle, J. Greulich, and A. Wolf, "Efficiency potential of p-type PERT vs. PERC solar cells," 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), pp. 3578-3583, 2018.
    [13] J. Nekarda et al., "Industrial PVD metallization for high efficiency crystalline silicon solar cells," 2009 34th IEEE Photovoltaic Specialists Conference (PVSC), pp. 000892-000896, 2009.
    [14] T. T. Li and A. Cuevas, "Effective surface passivation of crystalline silicon by rf sputtered aluminum oxide," Physica Status Solidi (RRL)–Rapid Research Letters, vol. 3, no. 5, pp. 160-162, 2009.
    [15] M. Bhaisare, A. Misra, and A. Kottantharayil, "Aluminum oxide deposited by pulsed-DC reactive sputtering for crystalline silicon surface passivation," IEEE Journal of Photovoltaics, vol. 3, no. 3, pp. 930-935, 2013.
    [16] M. Y. Seo, E. N. Cho, C. E. Kim, P. Moon, and I. Yun, "Characterization of Al2O3 films grown by electron beam evaporator on Si substrates," 2010 3rd International Nanoelectronics Conference (INEC), pp. 238-239, 2010.
    [17] P.-K. Liu, Y.-L. Cheng, and L. Wang, "Crystalline silicon PERC solar cell with ozonized AlOx passivation layer on the rear side," International Journal of Photoenergy, vol. 2020, 2020.
    [18] P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, and A. Vermeer, "High‐speed spatial atomic‐layer deposition of aluminum oxide layers for solar cell passivation," Advanced Materials, vol. 22, no. 32, pp. 3564-3567, 2010.
    [19] Y.-C. Huang and R. W. Chuang, "Study on annealing process of aluminum oxide passivation layer for PERC solar cells," Coatings, vol. 11, no. 9, p. 1052, 2021.
    [20] J. A. Töfflinger et al., "PECVD-AlOx/SiNx passivation stacks on silicon: Effective charge dynamics and interface defect state spectroscopy," Energy Procedia, vol. 55, pp. 845-854, 2014.
    [21] C.-C. Lin, J.-J. Huang, D.-S. Wuu, and C.-N. Chen, "Surface passivation property of aluminum oxide thin film on silicon substrate by liquid phase deposition," Thin Solid Films, vol. 618, pp. 118-123, 2016.
    [22] R. Branquinho et al., "Aqueous combustion synthesis of aluminum oxide thin films and application as gate dielectric in GZTO solution-based TFTs," ACS Applied Materials & Interfaces, vol. 6, no. 22, pp. 19592-19599, 2014.
    [23] D. Zheng et al., "Combustion synthesized zinc oxide electron‐transport layers for efficient and stable perovskite solar cells," Advanced Functional Materials, vol. 29, no. 16, p. 1900265, 2019.
    [24] F. Deganello and A. K. Tyagi, "Solution combustion synthesis, energy and environment: Best parameters for better materials," Progress in Crystal Growth and Characterization of Materials, vol. 64, no. 2, pp. 23-61, 2018.
    [25] E. Carlos, R. Martins, E. Fortunato, and R. Branquinho, "Solution combustion synthesis: towards a sustainable approach for metal oxides," Chemistry–A European Journal, vol. 26, no. 42, pp. 9099-9125, 2020.
    [26] M. Tawfik, X. Tonnellier, and C. Sansom, "Light source selection for a solar simulator for thermal applications: A review," Renewable and Sustainable Energy Reviews, vol. 90, pp. 802-813, 2018.
    [27] "LED與太陽能電池的區別." [Online]. Available: https://espih.com/led%E8%88%87%E5%A4%AA%E9%99%BD%E8%83%BD%E9%9B%BB%E6%B1%A0%E7%9A%84%E5%8D%80%E5%88%A5.html.
    [28] "東海物理教學實驗室." [Online]. Available: https://physcourse.thu.edu.tw/~mengwen/exp-photonics/exp-photonics-PPTpdf/PPT-1091-108.pdf.
    [29] "Minority carrier lifetime." [Online]. Available: https://www.freiberginstruments.com/upcdmdp/technology/electrical-characterization/minority-carrier-lifetime.html.
    [30] S. Steingrube, O. Breitenstein, K. Ramspeck, S. Glunz, A. Schenk, and P. P. Altermatt, "Explanation of commonly observed shunt currents in c-Si solar cells by means of recombination statistics beyond the Shockley-Read-Hall approximation," Journal of Applied Physics, vol. 110, no. 1, p. 014515, 2011.
    [31] X. Wang, M. Juhl, M. Abbott, Z. Hameiri, Y. Yao, and A. Lennon, "Use of QSSPC and QSSPL to monitor recombination processes in p-type silicon solar cells," Energy Procedia, vol. 55, pp. 169-178, 2014.
    [32] E. Urrejola, "Aluminum-Silicon contact formation through narrow dielectric openings : Application to industrial high efficiency rear passivated solar cells," May 2012. [Online]. Available: https://www.researchgate.net/figure/Top-model-of-the-Al-BSF-cell-taken-from-reference-97-which-explains-the-influence-of_fig7_230718795.
    [33] S. Joonwichien, S. Simayi, K. Shirasawa, K. Tanahashi, and H. Takato, "Thermal treatment effects on flat-band voltage shift in atomic-layer-deposited alumina or aluminum oxide/silicon nitride passivation stacks," Energy Procedia, vol. 92, pp. 353-358, 2016.
    [34] C.-H. Hsu et al., "Efficiency improvement of PERC solar cell using an aluminum oxide passivation layer prepared via spatial atomic layer deposition and post-annealing," Surface and Coatings Technology, vol. 358, pp. 968-975, 2019.
    [35] S. Chen, C. Lai, A. Chin, J. Hsieh, and J. Liu, "High-density MIM capacitors using Al2O3 and AlTiOx dielectrics," IEEE Electron Device Letters, vol. 23, no. 4, pp. 185-187, 2002.
    [36] 維基百科-金氧半電容. [Online]. Available: https://zh.m.wikipedia.org/zh-tw/%E9%87%91%E6%B0%A7%E5%8D%8A%E9%9B%BB%E5%AE%B9.
    [37] D. A. Neamen, "Semiconductor Physics and Devices. 4th ed," p. 395.
    [38] D. A. Neamen, "Semiconductor Physics and Devices. 4th ed," p. 396.
    [39] A. G. Aberle, W. Zhang, and B. Hoex, "Advanced loss analysis method for silicon wafer solar cells," Energy Procedia, vol. 8, pp. 244-249, 2011.
    [40] A. Bansal, P. Singh, R. K. Jha, and B. Singh, "Optimization of Al2O3 process parameters for passivation of c-silicon and its implementation on industrial monocrystalline silicon solar cell," Applied Physics B, vol. 125, no. 6, pp. 1-11, 2019.
    [41] M. Kerr, J. Schmidt, and A. Cuevas, "Comparison of the open circuit voltage of simplified PERC cells passivated with PECVD silicon nitride and thermal silicon oxide," Progress in Photovoltaics: Research and Applications, vol. 8, no. 5, pp. 529-536, 2000.
    [42] "WCT-120." [Online]. Available: https://www.sintoninstruments.com/products/wct-120/?lang=zh-hans.
    [43] "國家半導體中心,PECVD." [Online]. Available: https://www.tsri.org.tw/CommonUtilServlet?type=2.84&file=devicesd1s1a1CFd1s1a1T19‐A.PDF.
    [44] "國家半導體中心,Spin coater low-k 材料旋塗機." [Online]. Available: https://www.tsri.org.tw/CommonUtilServlet?type=2.84&file=devicesd1s1a1CFd1s1a1T12_A(2).pdf".
    [45] "國家半導體中心,EVG-6200NT." [Online]. Available: https://www.tsri.org.tw/CommonUtilServlet?type=2.84&file=devicesd1s1a1CFd1s1a1L20_A.pdf.
    [46] "NTHU Yu-Chueh Hung Lab." [Online]. Available: http://oplab.ipt.nthu.edu.tw/main/node/84.
    [47] "國家半導體中心,熱場發射掃描式電子顯微鏡 (TFSEM) ". [Online]. Available: https://www.tsri.org.tw/CommonUtilServlet?type=2.84&file=techd1s1a1%E7%86%B1%E5%A0%B4%E7%99%BC%E5%B0%84%E6%8E%83%E6%8F%8F%E5%BC%8F%E9%9B%BB%E5%AD%90%E9%A1%AF%E5%BE%AE%E9%8F%A1-20211125.pdf".
    [48] "清華大學奈米材料中心,太陽能電池入射光子轉換效率量測系統 (Incident photon conversion efficiency) ". [Online]. Available: https://cnmm.site.nthu.edu.tw/var/file/188/1188/img/251/517292038.pdf.
    [49] J. Schmidt, B. Veith, and R. Brendel, "Effective surface passivation of crystalline silicon using ultrathin Al2O3 films and Al2O3/SiNx stacks," Physica Status Solidi (RRL)–Rapid Research Letters, vol. 3, no. 9, pp. 287-289, 2009.
    [50] M. Depas, B. Vermeire, P. Mertens, R. Van Meirhaeghe, and M. Heyns, "Determination of tunnelling parameters in ultra-thin oxide layer poly-Si/SiO2/Si structures," Solid-State Electronics, vol. 38, no. 8, pp. 1465-1471, 1995.
    [51] C.-L. Hsieh, "Effect of double annealings for stack of ALD Al2O3/SiNx on the performance of PERC silicon solar cell," 國立清華大學, 2020. [Online]. Available: https://hdl.handle.net/11296/5zwzfb.
    [52] P.-K. Liu, "Monocrystalline PERC silicon solar cell with aluminum oxide film formed by O3 oxidation and inverted-pyramid-like surface structures," 國立清華大學, 2020. [Online]. Available: https://hdl.handle.net/11296/p5hcn8.
    [53] D.-Y. Lao, "Study of best annealing condition of rear side passivation stack layer for monocrystalline PERC silicon solar cell," 國立清華大學, 2020. [Online]. Available: https://hdl.handle.net/11296/h3u5q6.

    QR CODE