研究生: |
馮爾國 Feng, Erh-Kuo |
---|---|
論文名稱: |
二矽化鎳成長在超薄矽基板上之成長情形探討 The Growth of NiSi2 on Thin Substrates |
指導教授: |
蔡哲正
Tsai, Cho-Jen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 二矽化鎳 、磊晶矽化物 |
外文關鍵詞: | NiSi2, Epitaxial silicide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
如何控制磊晶矽化物的生長,一直是一個熱門的議題。不論是要應用在光電元件或是半導體,抑或是各種感測元件上,若能控制磊晶矽化物長出來的形狀,使其具有規則性,那麼或許將可使其在應用性上產生突破性的發展。我們在這裡討論的,是不使用微影製程的方式,而是讓矽化物以類似自組裝的方式,產生長程有序的結構。
無論如何,要控制矽化物的生長,必須先瞭解其成長的機制,在這篇論文裡,主要探討的是影響NiSi2生長機制的各種因素。另外,關於NiSi2的成長機制,在之前的研究已經證實其成長是由動力學所主導,而其形狀的分布是與機率有關係。由有限元素分析法,我們知道了island結構的高低,影響了其應變能與長寬比之間的關係,若能夠改變並固定NiSi2成長時的高度,並改變其應變能隨長寬比的演變,或許能夠改變其長寬比的分佈。因此我們在這裡設法去控制island的高度,在這篇論文裡,主要是使用應變矽以及SOI(Silicon on insulator)基板來達成我們的目的,利用控制基板的厚度,可以使成長出的island都固定在相同的高度。
實驗結果顯示,改變基板的厚度確實對NiSi2的分佈產生了影響,而長在應變矽基板的又與成長在SOI基板的有些不同,在應變矽基板上的NiSi2可能是受到了應變的影響,而產生了較不規則形狀的結構;而成長在SOI基板上的island與矽基板上的相比,其分佈較偏向窄且長。
藉由改變基板的厚度,我們確實達到了想要改變island成長分佈的目的,也符合我們當初預期的成果,透過這些實驗,也更進一步的瞭解要如何去控制island的成長。雖然我們現在還沒有辦法控制NiSi2長出形狀大小完全一樣,且排列為長程有序的結構,但相信在這邊提供的資料對於未來想要控制island的成長會有實質上的貢獻。
How to control the growth of epitaxial silicide has been an issue for many years. If we can control silicide islands to grow into the shape we want, the application of silicide may have breakthrough on many fields, such as optoelectronics industry and semiconductor industry. We don’t discuss with lithography here, but talking about self-growth. Trying to control the self-growth of nickel disilicide to produce ordered structure is our main purpose.
However, we must understand the growth mechanism of nickel discilide in order to control its growth. In this thesis, we study factors which affect the growth of nickel disilicide. In previous research, it has been confirmed that the growth of nickel disilicide is govern by kinetics, and its shape distribution is related to probability. From finite element method, we have known that the height of the structure has significant influence on the relationship between strain energy of the structure and its aspect ratio. If we can change and fix the height of the islands, maybe we can change their shape distribution. Based on this reason, we try to control the height of the islands. In this thesis, we use strained-Si and SOI (silicon on insulator) as substrates to achieve our purpose. By using the thin substrates, we can force all the islands to grow into truncated-hut structure with the same height.
The experimental results have showed that the thickness of the substrate will affect the shape distribution of the islands. The islands which grew on strained-Si are different from which grew on SOI. On strained-Si, the growth of nickel disilicide may be affected by stress field, so the islands grew into irregular shape. On the other hand, the islands grew on SOI are narrower and longer than which grew on Si.
By using the thin substrates, we have achieved the goal of changing the shape distribution of nickel disilicide. Through these experimental results, we have a better understanding of how to control the growth of the islands. Although we can’t control all the islands to grow into the same shape with the same size and same orientation, we still believe that the results provided here will make contributions to the future.
1. D. Cherns, G.R. Anstis, J.L. Hutchison, and J.C.H. Spence, Atomic-structure of the NiSi2/(111)Si interface. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 1982. 46(5): p. 849.
2. A. Kikuchi, Atomic-configuration-dependent energy at epitaxial silicide-silicon interfaces. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1998. 37(2): p. 653.
3. E.J. Vanloenen, The atomic-structure of the NiSi2-Si(111) interface. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1986. 4(3): p. 939.
4. U. Falke, A. Bleloch, M. Falke, and S. Teichert, Atomic structure of a (2 x 1) reconstructed NiSi2/Si(001) interface. Physical Review Letters, 2004. 92(11): p. 116103.
5. Y. Khang, S.J. Kahng, K.M. Mang, D. Jeon, J.H. Lee, Y.N. Kim, and Y. Kuk, Structure of nickel silicide on Si(001) - an atomic view. Journal of Vacuum Science & Technology B, 1994. 12(3): p. 2094.
6. R.T. Tung, A.F.J. Levi, J.P. Sullivan, and F. Schrey, Schottky-barrier inhomogeneity at epitaxial NiSi2 interfaces on Si(100). Physical Review Letters, 1991. 66(1): p. 72.
7. P. Werner, W. Jager, and A. Schuppen, Interface structure and schottky-barrier height of buried CoSi2/Si(001) layers. Journal of Applied Physics, 1993. 74(6): p. 3846.
8. S.B. Mi, C.L. Jia, Q.T. Zhao, S. Mantl, and K. Urban, NiSi2/Si interface chemistry and epitaxial growth mode. Acta Materialia, 2009. 57(1): p. 232.
9. A.E. Dolbak, B.Z. Olshanetsky, S.I. Stenin, S.A. Teys, and T.A. Gavrilova, The initial-stages of NiSi2 epitaxy on clean Si(111), Si(100) and Si(110) surfaces. Surface Science, 1991. 247(1): p. 32.
10. R.T. Tung, S. Nakahara, and T. Boone, Growth of single-crystal NiSi2 layers on Si (110). Applied Physics Letters, 1985. 46(9): p. 895.
11. R.T. Tung and F. Schrey, Growth of epitaxial CoSi2 and NiSi2 on (111), (100), and (110) Si at room-temperature. Layered Structures - Heteroepitaxy, Superlattices, Strain, and Metastability, 1990. 160: p. 243.
12. R.T. Tung, Epitaxial CoSi2 and NiSi2 thin-films. Materials Chemistry and Physics, 1992. 32(2): p. 107.
13. A. Nagashima, T. Kimura, A. Nishimura, and J. Yoshino, Comparative studies on the surface structures of NiSi2 and epitaxially formed on Si(111). Surface Science, 1999. 441(1): p. 158.
14. B. Daudin, N. Gogneau, C. Adelmann, E. Sarigiannidou, E. Monroy, E. Bellet-Amalric, and J.L. Rouviere, Comprehensive overview on elastic strain relaxation mechanisms in nitride heterostructures: Stranski-Krastanow versus Frank-Van der Merwe growth mode. 5th International Conference on Nitride Semiconductors (Icns-5), Proceedings, 2003: p. 2525.
15. M.C. Gimenez, M.G. Del Popolo, E.P.M. Leiva, S.G. Garcia, D.R. Salinas, C.E. Mayer, and W.J. Lorenz, Theoretical considerations of electrochemical phase formation for an ideal Frank-van der Merwe system - Ag on Au(111) and Au(100). Journal of the Electrochemical Society, 2002. 149(4): p. E109.
16. T. Schmidt and E. Bauer, Interfactant-mediated quasi-Frank-van der Merwe growth of Pb on Si(111). Physical Review B, 2000. 62(23): p. 15815.
17. G. Springholz, N. Frank, and G. Bauer, The origin of surface roughening in lattice-mismatched Frank van der Merwe type heteroepitaxy. Thin Solid Films, 1995. 267(1-2): p. 15.
18. D.J. Eaglesham and M. Cerullo, Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Physical Review Letters, 1990. 64(16): p. 1943.
19. Y.W. Mo, D.E. Savage, B.S. Swartzentruber, and M.G. Lagally, Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001). Physical Review Letters, 1990. 65(8): p. 1020.
20. C. Ratsch and A. Zangwill, Equilibrium-theory of the Stranski-Krastanov epitaxial morphology. Surface Science, 1993. 293(1-2): p. 123.
21. J.A. Floro, E. Chason, R.C. Cammarata, and D.J. Srolovitz, Physical origins of intrinsic stresses in Volmer-Weber thin films. Mrs Bulletin, 2002. 27(1): p. 19.
22. J.A. Floro, S.J. Hearne, J.A. Hunter, P. Kotula, E. Chason, S.C. Seel, and C.V. Thompson, The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer-Weber thin films. Journal of Applied Physics, 2001. 89(9): p. 4886.
23. P. Muller and R. Kern, Equilibrium shape of epitaxially strained crystals (Volmer-Weber case). Journal of Crystal Growth, 1998. 193(1-2): p. 257.
24. I. Daruka and A.L. Barabasi, Dislocation-free island formation in heteroepitaxial growth: A study at equilibrium. Physical Review Letters, 1997. 79(19): p. 3708.
25. T. George and R.W. Fathauer, Endotaxial growth of CoSi2 within (111) oriented Si in a molecular-beam epitaxy system. Applied Physics Letters, 1991. 59(25): p. 3249.
26. Z.A. He, D.J. Smith, and P.A. Bennett, Endotaxial silicide nanowires. Physical Review Letters, 2004. 93(25): p. 256102.
27. L.H. Wu and C.J. Tsai, Surface cleanness dependence of the interfacial orientation of endotaxial NiSi2 on Si(001). Electrochemical and Solid State Letters, 2009. 12(3): p. H73.
28. J. Tersoff and R.M. Tromp, Shape transition in growth of strained islands - spontaneous formation of quantum wires. Physical Review Letters, 1993. 70(18): p. 2782.
29. M. Kastner and B. Voigtlander, Kinetically self-limiting growth of Ge islands on Si(001). Physical Review Letters, 1999. 82(13): p. 2745.
30. D.E. Jesson, G. Chen, K.M. Chen, and S.J. Pennycook, Self-limiting growth of strained faceted islands. Physical Review Letters, 1998. 80(23): p. 5156.
31. C. Nisoli, D. Abraham, T. Lookman, and A. Saxena, Thermal stability of strained nanowires. Physical Review Letters, 2009. 102(24): p. 245504.
32. K.R. Roos, K.L. Roos, M.H.V. Hoegen, and F. Heringdorf, High temperature self-assembly of Ag nanowires on vicinal Si(001). Journal of Physics-Condensed Matter, 2005. 17(16): p. S1407.
33. V.B. Shenoy, Growth of epitaxial nanowires by controlled coarsening of strained islands. Applied Physics Letters, 2004. 85(12): p. 2376.
34. G.H. Lu and F. Liu, Towards quantitative understanding of formation and stability of Ge hut islands on Si(001). Physical Review Letters, 2005. 94(17): p. 176103.
35. J. Stangl, V. Holy, and G. Bauer, Structural properties of self-organized semiconductor nanostructures. Reviews of Modern Physics, 2004. 76(3): p. 725.
36. Y.C. Chu and C.J. Tsai, Shape transition between symmetric and asymmetric structures in epitaxial three-dimensional strained islands. Applied Physics Letters, 2008. 92(3): p. 031905.
37. Y.C. Chu and C.J. Tsai, Erratum: “Shape transition between symmetric and asymmetric structures in epitaxial three-dimensional strained islands” [Appl. Phys. Lett. 92, 031905 (2008). Applied Physics Letters, 2008. 92(10): p. 109906.
38. Y.C. Chu, L.H. Wu, and C.J. Tsai, The growth kinetics of the elongated NiSi2 clusters. Materials Chemistry and Physics, 2008. 109(2-3): p. 271.
39. S.Y. Chen and L.J. Chen, Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si. Applied Physics Letters, 2005. 87(25): p. 253111.
40. A. Mogilatenko, M. Falke, H. Hortenbach, S. Teichert, G. Beddies, and H.E. Hinneberg, Passivation of Si(001) by the surfactant Sb and its influence on the NiSi2 growth. Journal of Crystal Growth, 2005. 283(3-4): p. 303.
41. S.W. Lee, Y.L. Chueh, L.J. Chen, L.J. Chou, P.S. Chen, M.H. Lee, M.J. Tsai, and C.W. Liu, Growth of strained Si on high-quality relaxed Si1-xGex with an intermediate Si1-yCy layer. Journal of Vacuum Science & Technology A, 2005. 23(4): p. 1141.
42. B.E. Deal and A.S. Grove, General relationship for thermal oxidation of silicon. Journal of Applied Physics, 1965. 36(12): p. 3770.
43. D. Smeets, G. Vanhoyland, J. D'Haen, and A. Vantomme, On the thermal expansion coefficient of CoSi2 and NiSi2. Journal of Physics D-Applied Physics, 2009. 42(23): p. 235402.
44. R. Bonnet, M. Loubradou, and F.R. Chen, Observation of the elastic field related to a structural domain boundary along a {111}NiSi2//{115}Si heterotwin interface. European Physical Journal-Applied Physics, 1998. 2(2): p. 157.
45. F.R. Chen and W.J. Chen, Atomic faceting NiSi2(115)/(111)Si interface. Electron Microscopy 1994, Vols 2a and 2b, 1994: p. 139.
46. M. Liehr, J.E. Lewis, and G.W. Rubloff, Kinetics of high-temperature thermal-decomposition of SiO2 on Si(100). Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1987. 5(4): p. 1559.
47. V. Palermo and D. Jones, Self-organised growth of silicon structures on silicon during oxide desorption. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2002. 88(2-3): p. 220.
48. A. Castaldini, D. Cavalcoli, A. Cavallini, D. Jones, V. Palermo, and E. Susi, Surface modifications in Si after rapid thermal annealing. Journal of the Electrochemical Society, 2002. 149(12): p. G633.
49. I. Kinefuchi, H. Yamaguchi, Y. Sakiyama, S. Takagi, and Y. Matsumoto, Inhomogeneous decomposition of ultrathin oxide films on Si(100): Application of Avrami kinetics to thermal desorption spectra. Journal of Chemical Physics, 2008. 128(16): p. 164712.
50. A.F. Pun, X. Wang, S.M. Durbin, and J.P. Zheng, A method for reducing surface roughness during the thermal desorption of silicon. Thin Solid Films, 2006. 504(1-2): p. 136.
51. G.W. Rubloff, Defect microchemistry in SiO2/Si structures. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1990. 8(3): p. 1857.
52. G.W. Rubloff, K. Hofmann, M. Liehr, and D.R. Young, Defect microchemistry at the SiO2/Si interface. Physical Review Letters, 1987. 58(22): p. 2379.
53. Y. Wei, R.M. Wallace, and A.C. Seabaugh, Void formation on ultrathin thermal silicon oxide films on the Si(100) surface. Applied Physics Letters, 1996. 69(9): p. 1270.