簡易檢索 / 詳目顯示

研究生: 詹閔超
Jan, Min-Chau
論文名稱: 共存無線通訊系統之適應性頻帶外干擾抑制技術
Adaptive Out-of-Band Interference Suppression Techniques for Coexistent Wireless Communication Systems
指導教授: 王晉良
Wang, Chin-Liang
口試委員: 陳紹基
李志鵬
林丁丙
林信標
蔡育仁
鄭獻勳
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 60
中文關鍵詞: 共存通訊系統適應性濾波器無線區域網路藍牙頻帶外干擾
外文關鍵詞: coexistent wireless communication systems, adaptive filter, Wi-Fi, Bluetooth, Out-of-Band interference
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為提升便利性,現代行動裝置通常須搭載數種無線通訊系統,例如蜂巢通訊、無線區域網路 (WLAN或Wi-Fi)、藍芽 (Bluetooth;BT) 系統等,然而,當這些共存系統同時運作時,可能造成相互干擾以及頻帶外(out-of-band;OOB)干擾的問題。在本論文中,我們探討BT暨Wi-Fi共存系統中,BT傳送端訊號洩漏至Wi-Fi傳送端所造成的OOB干擾問題,以及對應的抑制方法。首先,我們分析OOB干擾訊號的產生過程,並利用適應性正規化最小均方(normalized least-mean-squared; NLMS)演算法加以抑制;此方法雖可達到不錯的OOB干擾抑制效果,但亦會衰減Wi-Fi傳送訊號。為降低此一Wi-Fi訊號衰減效應,我們接著發展一種修正式NLMS演算法,再加上一個Wi-Fi回授訊號估測器以提升OOB干擾抑制效能。另外,我們進一步修正上述適應性演算法結構,以在I/Q不平衡的情況下,能夠有效抑制OOB干擾,但不致於對Wi-Fi傳送訊號有明顯的影響;為了降低演算法的複雜度,我們更發展了一種基於修正式NLMS演算法的抗I/Q不平衡方法。電腦模擬結果顯示,我們所提出之OOB干擾抑制方法在完美I/Q平衡的情況下可達到36.39 dB的效能增益,而在10%振幅不匹配及10度相位不匹配之I/Q不平衡的情況下,則可達到36.19 dB的效能增益。


    To increase convenience for users, modern mobile devices often are equipped with multiple wireless communication systems, such as cellular, Wi-Fi, and Bluetooth (BT) systems. One major problem associated with such in-device coexistence is that out-of-band (OOB) interference can occur when two coexistent systems operate simultaneously. In this dissertation, we investigate the OOB interference issue in coexistent Wi-Fi and BT systems, especially the interference caused by leakage of the signal from the BT transmitter (Tx) to the Wi-Fi Tx, and the methods used to suppress the OOB interference. First, we analyze how the OOB interference signal is generated and then apply an adaptive normalized least-mean-squared (NLMS) algorithm to suppress it. This scheme can provide good performance in suppressing the OOB interference, but it can also degrade the Wi-Fi transmit signal concurrently. To alleviate degradation of the Wi-Fi signal, we develop a modified-NLMS algorithm and combine it with a Wi-Fi feedback signal estimator to form an improved OOB interference suppression scheme. Also, we modify the above adaptive scheme so that it can effectively suppress the OOB interference without significantly degrading the Wi-Fi transmit signal under in-phase and quadrature (I/Q) imbalance. We also propose an alternative anti-I/Q imbalance scheme based on the modified-NLMS algorithm to reduce complexity. Computer simulation results demonstrate that the proposed adaptive OOB interference suppression schemes can provide performance gains up to 36.39 dB under perfect I/Q balance, and up to 36.19 dB under I/Q imbalance with 10% amplitude mismatch and 10-degree phase mismatch.

    Abstract---------i Contents---------ii List of Figures---------vi List of Table---------ix Chapter 1 Introduction---------1 1.1 Nonlinear Effects of RF Components in Wireless Communication Systems---------1 1.2 Out-of-Band Interference in Coexistent Wireless Communication Systems---------5 1.3 Related Works for Coexistent Wireless Communication Systems---------8 1.4 Contributions and Organization of this Dissertation---------9 Chapter 2 Coexistent Wi-Fi and Bluetooth Systems---------10 2.1 System Model---------10 2.2 Out-of-Band Interference Caused by Bluetooth-Transmitter Leakage---------14 Chapter 3 Adaptive Out-of-Band Interference Suppression Under Perfect I/Q Balance---------16 3.1 An NLMS-Based Scheme and a Wi-Fi Signal Suppression Issue---------16 3.2 A Modified NLMS-Based Scheme---------19 3.3 A Modified NLMS-Based Scheme with Wi-Fi Feedback Signal Estimation---------21 3.4 Simulation Results---------23 3.5 Summary---------31 Chapter 4 Adaptive Out-of-Band Interference Suppression Under I/Q Imbalance---------32 4.1 I/Q Imbalance Issues---------32 4.2 An Anti-I/Q Imbalance Scheme with Wi-Fi Feedback Signal Estimation---------34 4.3 A Reduced-Complexity Anti-I/Q Imbalance Scheme---------36 4.4 Simulation Results---------40 4.5 Summary---------50 Chapter 5 Conclusions---------51 Appendix A The Convergence Analysis of the Modified NLMS Algorithm ---------52 Bibliography---------54 Publication List---------60

    [1] X. Li, B. Plumb, and Z. Wu, “Energy ratio based WiFi OFDM leakage detection in LTE downlink for in-Device interference,” in Proc. IEEE Consum. Commun. Netw. Conf. (CCNC), Las Vegas, NV, USA, Jan. 2014, pp. 133–138.
    [2] Z. Hu, Z. Chen, and P. Dayal, “Interference avoidance for in-device coexistence in 3GPP LTE-Advanced: Challenges and Solutions,” IEEE Commun. Mag., vol. 50, no. 11, Nov. 2012.
    [3] Q. Zhou, C. Lin, C. Chien, P. Laing, and HC. Hwang, “Adaptive Tx skirt suppression for multi-radio in-device coexistence,” in Proc. IEEE Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP), Vancouver, BC, Canada, May 2013, pp. 4740–4743.
    [4] M. F. Marzban, M. Ismail, M. M. Abdallah, M. M. Khairy, K. Qaraqe, and E. Serpedin, “IDC interference-aware resource allocation for LTE/WLAN heterogeneous networks,” IEEE Wireless Commun. Lett., vol. 4, no. 6, pp. 581–584, Dec. 2015.
    [5] M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Trans. Signal Process., vol. 49, no. 10, pp. 2335–2344, Oct. 2001.
    [6] L.Anttila, M. Valkama, and M. Renfors, “Blind moment estimation techniques for I/Q imbalance compensation in quadrature receivers,” in Proc. IEEE Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), Helsiniki, Finland, Sep. 2006, pp. 11–14.
    [7] A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1399–1410, Dec. 1995.
    [8] S. Mirabbasi and K. Martin, “Classical and modern receiver architectures,” IEEE Commun. Mag., vol. 38, no. 111, pp. 132–139, Nov. 2000.
    [9] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuit Syst. II, Analog Digit. Signal Process., vol. 44, no. 6, pp. 428–435, Jun. 1997.
    [10] A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1399–1410, Dec. 1995.
    [11] L. Anttila, Digital front-end signal processing with widely-linear signal models in radio devices, Ph.D., Tampere University of Technology (Tampere University of Technology, Tampere, 2011). http://urn.fi/URN:ISBN:978-952-15-2978-8.
    [12] R. Svitek and S. Raman, “DC offsets in direct-conversion receivers: Characterization and implications,” IEEE Microw. Mag., vol. 6, no. 3, pp. 76–86, Sep. 2005.
    [13] H. Cheng, Y. Xia, Y. Huang, L. Yang, and D. P. Mandic, “A normalized complex LMS based blind I/Q imbalance compensator for GFDM receivers and its full second-order performance analysis,” IEEE Trans. Signal Process., vol. 66, no. 17, 4701–4712, Sep. 2018.
    [14] L. Anttila, P. Händel, and M. Valkama, “Joint mitigation of power amplifier and I/Q modulator impairments in broadband direct-conversion transmitters,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp. 730–739, Apr. 2010.
    [15] M. Windisch and G. Fettweis, “Standard-independent I/Q imbalance compensation in OFDM direct-conversion receivers,” in Proc. IEEE Eur. Signal Process. Conf. (EUSPICO), Antalya, Turkey, Sep. 2005, pp. 4–8.
    [16] L. Ding, Z. Ma, D. R. Morgan, M. Zierdt, and G. T. Zhou, “Compensation of frequency-dependent gain/phase imbalance in predistortion linearization systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 1, pp. 390–397, Feb. 2008.
    [17] M. Abdelaziz, L. Anttila, A. Brihuega, F. Tufvesson, and M. Valkama, “Digital predistortion for hybrid MIMO transmitters,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 3, pp. 445–454, Jun. 2018.
    [18] M. Abdelaziz, L. Anttila, and M. Valkama, “Reduced-complexity digital predistortion for massive MIMO,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Process. (ICASSP), New Orleans, LA, USA, Mar. 2017, pp. 6478–6482.
    [19] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE Trans. J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, Sep. 2014.
    [20] C.-L Wang, M.-C. Jan, Y.-S. Chang, E. Wang, and Y.-H. Lin, “Adaptive out-of-band suppression for coexistent Wi-Fi and Bluetooth systems,” IEEE Commun. Lett., vol. 21, no. 10, pp. 2306–2309, Oct. 2017.
    [21] O. Bar-Shalom, G. Chinn, K. Fleming, and U. Gadamsetty, “On the union of WPAN and WLAN in mobile computers and hand-held devices,” Intel Technol. J., vol. 7, no. 3, pp. 20–36, Aug. 2003.
    [22] J. Lee, S. Jeon, and D.-K. Kim, “A pre-correction algorithm for broadcasting transmitter,” IEEE Trans. Broadcast., vol. 62, no. 2, pp. 487–495, Apr. 2016.
    [23] H. H. Liao, H. Jiang, P. Shanjani, and A. Behzad, “A fully integrated 2×2 power amplifier for dual band MIMO 802.11n WLAN application using SiGe HBT technology,” in Proc. IEEE Radio Freq. Integr. Circuits Symp (RFIC), Atlanta, GA, USA, Jun. 2008, pp. 515–518.
    [24] H. Zareian and V. T. Vakili, “New adaptive method for IQ imbalance compensation of quadrature modulators in predistortion systems,” EURASIP J. Adv. Sig. Proc., 2009. 10.1155/2009/181285.
    [25] L. Anttila, P. Händel, O. Mylläri, and M. Valkama, “Recursive learning-based joint digital predistorter for power amplifier and I/Q modulator impairments,” Int. J. Microw. Wireless Techn., vol. 2, no. 2, pp. 173–182, Jul. 2010.
    [26] S. A. Bassam, M. Helaoui, and F. M. Ghannouchi, “2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 10, pp. 2547–2553, Oct. 2011.
    [27] S. Bachir, C. Nicusor, and C. Duvanaud, “Linearization of RF power amplifiers using adaptive Kalman filtering algorithm,” J. Circuits, Syst., Comput., vol. 20, no. 6, pp. 1001–1018, Oct. 2011.
    [28] T. Bhandari, S. Nagarajan, and V. Krishna A, “Oblique projection based equalization for OFDM in presence of in-device coexistence interference,” in Proc. IEEE Int. Conf. Emerging Trends Commun., Control, Signal Process., Comput. Appl. (C2SPCA), Bangalore, India, Oct. 2013, pp. 1–5.
    [29] S. Kiminki and V. Hirvisalo, “Coexistence-aware scheduling for LTE and WLAN during hard in-device interference,” in Proc. IEEE Int. ICST Conf. Cogn. Radio Oriented Wireless Netw., Commun. (CROWNCOM), Stockholm, Sweden, Jun. 2012, pp. 1–6.
    [30] C.-L. Wang, K.-K. Chen, M.-C. Jan, Y.-S. Chang, E. Wang, and Y.-H. Lin, “Adaptive cancellation of transmitter leakage in frequency-division duplexing transceivers,” in Proc. IEEE Wireless, Opt. Commun. Conf. (WOCC), Hualien, Taiwan, Apr. 2018, pp. 1–5.
    [31] Adel. A. M. Saleh, “Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers,” IEEE Trans. Commun., vol. 29, no. 11, pp. 1715–1720, Nov. 1981.
    [32] P. L. Gilabert, and G. Montoro, “3-D distributed memory polynomial behavioral model for concurrent dual-band envelope tracking power amplifier linearization,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 638–648, Feb. 2015.
    [33] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun., vol. 52, no. 1, pp. 159–165, Jan. 2004.
    [34] J. K. Cavers, “The effect of quadrature modulator and demodulator errors on adaptive digital predistorters for amplifier linearization,” IEEE Trans. Veh. Technol., vol. 2, pp. 456–466, May 1997.
    [35] S. Haykin, Adaptive Filter Theory, London, U. K.: Pearson, 2013.
    [36] D. L. Maskell and G. S. Woods, “Adaptive subsample delay estimation using a modified quadrature phase detector,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 52, no. 10, pp. 669–674, Oct. 2005.
    [37] D. L. Maskell and G. S. Woods, “Adaptive subsample delay estimation using windowed correlation,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 52, no. 6, pp. 478–482, Jun. 2006.
    [38] P. M. Clarkson and M. V. Dokic, “Real-time adaptive filters for time-delay estimation,” in Proc. IEEE Midwest Symp. Circuits, Syst. (MWSCAS), Champaign, IL, USA, Aug. 1989, pp. 1–5.
    [39] L. Anttila, M. Valkama, and M. Renfors, “Frequency-selective I/Q mismatch calibration of wideband direct-conversion transmitters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 4, pp. 359–363, Apr. 2008.
    [40] L. Anttila, M. Valkama, and M. Renfors, “Blind compensation of frequency-selective I/Q imbalance in quadrature radio receivers: Circularity-based approach,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Process. (ICASSP), Honolulu, HI, USA, Apr. 15–20, 2007.
    [41] L. Anttila, M. Valkama, and M. Renfors, “Gradient-based blind iterative techniques for I/Q imbalance compensation in digital radio receivers,” in Proc. IEEE Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Helsinki, Finland, Jun. 2007, pp. 17–20.
    [42] M. Valkama, M. Renfors, and V. Koivunen, “Compensation of frequency-selective I/Q imbalance in wideband receivers: Models and algorithms,” in Proc. IEEE Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Taiwan, ROC, Mar. 2001, pp. 20–23.
    [43] L. Anttila and M. Valkama, “Blind signal estimation in widely-linear signal models with fourth-order circularity: Algorithms and application to receiver I/Q calibration,” IEEE Signal Process. Lett., vol. 20, no. 3, pp. 221–224, Nov. 2012.
    [44] M. Valkama and M. Renfors, “Advanced DSP for I/Q imbalance compensation in a low-IF receiver,” in Proc. IEEE Int. Conf. Commun. (ICC), New Orleans, LA, USA, Jun. 2000, pp. 18–22.
    [45] M. Valkama, M. Renfors, and V. Koivunen, “Blind I/Q signal separation-based solutions for receiver signal processing,” EURASIP J. Adv. Signal Proc., 2005: 525164.
    [46] P. Song, N. Zhang, H. Zhang, and F. Gong, “Blind estimation algorithms for I/Q imbalance in direct down-conversion receivers,” in Proc. IEEE Veh. Technol. Conf. (VTC), Chicago, IL, USA, Aug. 2018, pp. 27–30.
    [47] M. Valkama, M. Renfors, and V. Koivunen, “On the performance of interference canceller based I/Q imbalance compensation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Istanbul, Turkey, Jun. 2000, pp. 5–9.
    [48] T. Paireder, C. Motz, R. S. Kanumalli, S. Sadjina, and M. Huemer, “Ultra-low complex blind I/Q-imbalance compensation,” IEEE Trans. Circuits Syst. I, Regul. Pap., vol. 66, no. 9, pp. 3517–3530, Sep. 2019.
    [49] H. Cheng, Y. Xia, Y. Huang, L. Yang, and D. P. Mandic, “Joint channel estimation and Tx/Rx I/Q imbalance compensation for GFDM systems,” IEEE Trans. Wireless Commun., vol. 18, no. 2, pp. 1304–1317, Jan. 2019.
    [50] Y. Yao, Y. Jin, M. Li, Z. Dai, and S. He, “An accurate three-input nonlinear model for joint compensation of frequency-dependent I/Q imbalance and power amplifier distortion,” IEEE Access, vol. 7, pp. 140651–140664, Sep. 2019.
    [51] M. Aziz, M. V. Amiri, M. Helaoui, and F. M. Ghannouchi, “Statistics-based approach for blind post-compensation of modulator’s imperfections and power amplifier nonlinearity,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 33, pp. 1063–1075, Mar. 2019.
    [52] G. T. Gil, “Normalized LMS adaptive cancellation of self-image in direct-conversion receivers,” IEEE Trans. Veh. Technol., vol. 58, no. 2, pp. 535–545, Feb. 2009.
    [53] L. Anttila, M. Valkama, and M. Renfors, “Blind compensation of frequency-selective I/Q imbalances in quadrature radio receivers: Circularity-based approach,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), HI, USA, Apr. 2007, pp. 245–248.
    [54] G. Xing, M. Shen, and H. Liu, “Frequency offset and I/Q imbalance compensation for OFDM direct-conversion receivers,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Hong Kong, China, Apr. 2003, pp. IV 708–711.
    [55] M. Valkama, M. Renfors, and V. Koivunen, “Blind signal estimation in conjugate signal models with application to I/Q imbalance compensation,” IEEE Signal Process. Lett., vol. 12, no. 11, pp. 733–736, Nov. 2005.
    [56] M. Valkama, M. Renfors, and V. koivunen, “Compensation of frequency-selective I/Q imbalances in wideband receivers: Models and algorithms,” in Proc. IEEE Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Taoyuan, Taiwan, Mar. 2001, pp. 42–45.
    [57] B. Razavi, RF Microelectronics, New Jersey, USA: Prentice Hall, 1998.
    [58] J. M. Martinez and R. B. D. Sampaio, “Parallel and sequential Kaczmarz methods for solving underdetermined nonlinear equations,” J. Compt. Appl. Math., vol. 15, no. 3, pp. 311–321, Jul. 1986.

    QR CODE