簡易檢索 / 詳目顯示

研究生: 李政諺
Li, Chen-Yen
論文名稱: 排除基板電阻值之小面積太陽能電池J-V特性萃取與探討
An extracting method of the substrate-resistance-free small-area J-V characteristics of solar cells
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員: 洪勝富
孟心飛
冉曉雯
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 69
中文關鍵詞: 大面積有機太陽能電池基板電阻
外文關鍵詞: large area, organic solar cell, substrate resistance
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文將研究面積與基板電阻值對元件特性的影響,並且提出一套演算法,可將大面積元件電流密度與電壓關係圖(J-V)轉換成小面積元件J-V,有效排除基板電阻對大面積元件所造成的影響。
    首先利用演算法從實際長型大面積元件J-V曲線導出同樣狀況下小面積元件的J-V曲線,並與實際值做比較,結果與實際相符,證明了此演算法的可行性;並從各種不同大面積尺寸的電池出發,透過此演算法多次後每一個得到的小面積電池J-V特性也吻合,也就是說這些不同尺寸的大面積電池都排除了基板電阻的影響,得到了一個不考慮基板電阻的J-V曲線。
    接著就可利用此演算法比較並探討元件特性和內部電路參數隨著元件長度的變化趨勢,發現因為基板電壓降的問題使得元件長度增加,PCE、Jsc、FF都會下降,Voc則沒此問題所以不變;最後也會去比較並探討各種不同基板電阻和不同短路電流對元件特性的影響,發現隨著基板片電阻和短路電流的增加,元件微縮後各參數的變化百分比也會變大,而由各參數的變化百分比來看,基板電阻的影響主要是反映在J-V圖的FF上。


    An algorithm which extracts the substrate-resistance-free current-voltage (J-V) characteristics from large-area solar cells is proposed here. The effect of substrate resistance on device performance was also discussed.
    We apply the algorithm to a set of real data measured from the devices with various device areas. The extracted results are matched with the real data. Besides, the extracted results of all devices are almost identical. Both observations cement the validity of the proposed algorithm.
    The dependence of device performance and circuit-level parameters on the device length can be analyzed with this algorithm. Negative dependence of the power conversion efficiency (PCE), the short-circuit current (Jsc) and the fill factor (FF) of devices on the device length is observed while the open-circuit voltage (Voc) shows no dependence on the device length. This observed effect can be explained by the non-uniform potential distribution on the substrate.
    Finally, we used the algorithm to quantify the effect of the substrate resistance and short-circuit current on device performance. We found that increases in percentage change of PCE, Jsc, FF, Rs and Rsh as sheet resistance of substrate or short-circuit current increase. The percentage change of FF is the maximum value, so we can conclude that substrate resistance affects FF most.

    摘要 I Abstract II 致謝 IV 目錄 VIII 圖目錄 X 表目錄 XII 第一章 序論 1 1.1 研究背景 1 1.1.1 前言 1 1.1.2 太陽能電池的發展 1 1.1.3 有機太陽能電池發展 2 1.2 研究動機 4 1.2.1有機高分子太陽能電池的優勢 4 1.2.2 P3HT與PCBM混和之有機太陽能電池 5 1.2.3 大面積太陽能電池的問題 6 1.3 論文架構 6 第二章 元件原理 7 2.1 太陽能電池概論 7 2.1.1基本原理 7 2.1.2電池基本參數 10 2.1.3操作原理 14 2.2 有機太陽能電池材料 17 2.2.1共軛高分子材料特性 17 2.2.2有機材料能帶理論 18 2.2.3主動層材料 19 2.2.4電洞傳輸層材料 20 2.2.5電極材料 21 2.3 有機太陽能電池結構 21 第三章 實驗方法與流程 23 3.1 ITO玻璃基板圖樣化 23 3.1.1切割與清洗 23 3.1.2乾式光阻的黏貼 24 3.1.3曝光 24 3.1.4顯影 24 3.1.5蝕刻 25 3.2 ITO玻璃片電阻值的調變與量測 25 3.2.1 ITO片電阻值的調變 25 3.2.2 ITO片電阻值的量測 27 3.3 圖樣化ITO玻璃基板清洗 28 3.4 正結構元件高分子成膜 28 3.4.1 ITO玻璃基板親水性 28 3.4.2 電洞傳輸層成膜 29 3.4.3 主動層成膜 29 3.5 電極蒸鍍 30 3.6 封裝 31 3.7 量測 32 第四章 實驗結果與討論 34 4.1演算法與參數萃取 34 4.1.1排除基板電阻之演算法 34 4.1.2電路參數萃取 39 4.2演算法之驗證 42 4.2.1大面積轉小面積 42 4.2.2不同面積微縮 44 4.3運用演算法之元件分析與探討 47 4.3.1不同面積元件效能與電路參數之分析與探討 47 4.3.2基板電阻對大面積元件的影響 50 4.3.3短路電流對大面積元件的影響 58 第五章 總結 66 參考資料 68

    [1] Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. : Res. Appl. 7, 471 (1999).
    [2] K. M. Coakley,Wudl and M. D. McGehee,“Conjugated polymer photovoltaic cells,” Chem. Mater. 16, 4533 (2004).
    [3] H. Hoppe, and N. S. Sariciftci,“Organic solar cell: An review,”J. Mater. Res., Vol. 19, No. 7, (2004).
    [4] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
    [5] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, Adv. Funct. Mater. 17, 1636 (2007).
    [6] S. Choi, W. J. Potscavage, Jr., and B. Kippelena, “Area-scaling of organic solar cells,” J. Appl. Phys. 106, 054507(2009).
    [7] R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R. H. Friend, A. B. Holmes, J. Phys.:Condens. Matter. 6, 1379 (1994).
    [8] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M.T. Rispens, L. Sanchez, J. C. Hummelen, and T Fromherz, “ The influence of materials work function on the open circuit voltage of plastic solar cells,” Thin Solid Film, 403-404,368 (2002).
    [9] H. Kim, S-H. Jin, H. Suh, and K. Lee, “Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells,” In Organic Photovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE, Vol. 5215, (SPIE, Bellingham, WA, 2004), p. 111.

    [10] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. De Leeuw, “ Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, 401, 685 (1999).
    [11] Y. Liang, D. Feng, Y. Wu, S. Tsai, G. Li, C. Ray and L. Yu “Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties” J. Am. Chem. Soc., 131 (22), pp 7792–7799(2009).
    [12] J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,” J.Org. Chem. 60, 532 (1995).
    [13] E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678 (2003).
    [14] S. K. So1, W. K. Choi1, C. H. Cheng1, L. M. Leung, C. F. Kwong, Appl .Phys.
    A,68, 447 (1999).
    [15] M.G. Mason, L.S. Hung, C.W. Tang, S. T. Lee, K. W. Wong, M. Wang, “Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices,” J. Appl. Phys., 86, 1688 (1999).
    [16] J. Huang, G. Li, and Y. Yang, “A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process,” Adv. Mater., 20, 415–419( 2008).
    [17] A. Moliton, J.-M. Nunzi, Polym. “How to model the behaviour of organic photovoltaic cells,”Int. ,55 ,583 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE