研究生: |
郭芳妤 Kuo, Fang Yu |
---|---|
論文名稱: |
旋風分離器結合表面聲波感測器應用於PM2.5偵測 PM2.5 Detection by Surface Acoustic Wave Sensor with a Cyclone Separator |
指導教授: |
饒達仁
Yao, Da Jeng |
口試委員: |
林致廷
鄭桂忠 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 旋風分離器 、表面聲波感測器 、PM2.5 |
外文關鍵詞: | Cyclone Separator, Surface Acoustic Wave Sensor, PM2.5 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用旋風分離器結合剪切式表面聲波( shear horizontal surface acoustic wave,SAW )原理發展出微型化的PM2.5感測系統,設計概念是將旋風分離器用於分離小於2.5微米之懸浮微粒,並輸送至表面聲波晶片上進行感測。利用離心管作為旋風分離器,可有效縮小裝置體積及流量需求;以36° YX-LiTaO3之壓電材料配合微機電之黃光微影製程完成感測晶片,搭配共振電路即可成功激發出中心頻率122MHz的表面聲波,並透過頻率變化量來判斷沉降於感測晶片上的微粒重量,進而計算出空氣中懸浮微粒之質量濃度( μg/m3 ),因此研究分為旋風分離器的效率設計、模擬以及表面聲波晶片量測兩個主要部分,最終進行裝置的整合實驗。
設計可量測一般環境中PM2.5濃度的微型化感測器為本研究的最終目標,為達到此目標,將會對旋風分離器的耗能、裝置體積以及感測器靈敏度、穩定度等進行探討與改進。旋風分離器方面,利用市售的0.2ml離心管結合0.5毫米直徑大小的進、出氣口成為一旋風分離器,以CFD軟體進行效率模擬出粒徑截切點d50為2.5微米時,流量需求約是0.125LPM,搭配微型幫浦後的分離器體積大約是100cm3以下;表面聲波感測器方面,每1奈克的微粒會造成約9赫茲的頻率變化量,兩者結合進行PM2.5感測,計算後的濃度值與氣膠監視量測儀的濃度值有很強的正相關性,當採樣時間為160秒,感測最低濃度極限為11μg/m3,所需總感測時間約為5分鐘。
In this research, a PM2.5 monitor prototype is designed and developed, including the shear horizontal mode surface acoustic wave (SH-SAW) sensor combining with a cyclone separator. In the experiments, aerosols generated by incense smoke will be separated and sampled inside the designed cyclone separator first, and the sampled PM2.5 will be introduced into the sensing area of SH-SAW chip for the detection. Microcentrifuge tubes as the cyclone separator can reduce the device size and power consumption effectively; 122 MHz surface acoustic wave (SAW) chips are fabricated by MEMS techniques in well design and processes; gold interdigital transducers are deposited on the 36° YX-LiTaO3 and using different frequency shift to identify the concentration of sample. Therefore the research is divided into two major parts: cyclone separator design, efficiency simulation and SAW chip detection experiment.
To accomplish the goal of detecting the PM concentration in normal atmosphere, the efficiency, device size of the separator and the sensitivity, stability of the SAW chip will be discussed and improved. 0.2 mL microcentrifuge tube with 0.5mm inlet and outlet diameter as the separator has the separation cutoff diameters (d50) at 2.5μm, and the required inlet volumetric flow rate is 0.125 LPM simulated by CFD software; SAW sensor exhibits sensitivity approximately 9Hz/ng; PM2.5 detection experiment conducting with integrated device, shows the strong positive linear correlation between aerosol monitor data, the concentration limit of detection is 11μg/m3 with 160 seconds sample time, total detection time is 5 minutes.
1. Public Health, S.a.E.D.o.H.D., World Health Organization, Burden of disease from the joint effects of Household and Ambient Air Pollution for 2012. 2014.
2. al., Z.e., Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. GEOPHYSICAL RESEARCH LETTERS, 2007. 34.
3. 細懸浮微粒健康風險與預防手冊. 2012.
4. Agency, U.S.E.P. Particle Pollution (PM). 2015; Available from:
5. 行政院環境保護署. 懸浮微粒-貝他射線分析法. 2014; Available from:
6. 行政院環境保護署. 懸浮微粒-質量慣性法. 2014; Available from:
7. Pramod Kulkarni, P.A.B., Klaus Willeke, Biological Particle Sampling: Principles, Techniques, and Applications, in Aerosol Measurement. 2011, Wiley. p. 22.
8. Chong Liu, P.-C.H., Hyun-Wook Lee, Meng Ye, Guangyuan Zheng, Nian Liu, Weiyang Li and Yi Cui, Transparent air filter for high-efficiency PM2.5 capture. Nature Communications, 2015. 6.
9. Billy W. Loo, C.P.C., Development of High Efficiency Virtual Impactors. Aerosol Science and Technology, 1988. 9(3): p. 10.
10. Yong-Ho Kim, D.P., Jungho Hwang and Yong-Jun Kim A hybrid chip based on aerodynamics and electrostatics for the size-dependent classification of ultrafine and nano particles. Lab on a Chip, 2009. 9.
11. Alex C. Hoffmann, L.E.S., A Closer Look at Centrifugal Gas Cleaning Devices, in Gas Cyclones and Swirl Tubes: Principles, Design, and Operation. 2002, Springer-Verlag Berlin Heidelberg: New York. p. 3.
12. Alex C. Hoffmann, L.E.S., Particle Motion, in Gas Cyclones and Swirl Tubes: Principles, Design, and Operation. 2002, Springer-Verlag Berlin Heidelberg: New York. p. 27.
13. Corporation, S. Particle Size Distribution Calculation Method. 2015; Available from:
14. Tippayawong, P.I.a.N., Aerosol size distribution measurement using multi-channel electrical mobility sensor. Journal of Aerosol Research, 2006. 21(4): p. 12.
15. Hidetoshi Takahashi, T.K., Kiyoshi Matsumoto and Isao Shimoyama, Simultaneous detection of particles and airflow with a MEMS piezoresistive cantilever. MEASUREMENT SCIENCE AND TECHNOLOGY, 2013. 24: p. 7.
16. Thompson, M., Surface-Launched Acoustic Wave Sensors. 1997.
17. NIHON DEMPA KOGYO CO., L., QCM sensors. 2013.
18. Shen, C.-Y. and S.-Y. Liou, Surface acoustic wave gas monitor for ppm ammonia detection. Sensors and Actuators B: Chemical, 2008. 131(2): p. 673-679.
19. David G. Nasha, T.B., Murray V. Johnston, Aerosol mass spectrometry: An introductory review. International Journal of Mass Spectrometry 2006. 258: p. 11.
20. Paprotny, I., et al., Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: Design, fabrication, and experimental results. Sensors and Actuators A: Physical, 2013. 201: p. 506-516.
21. Wasisto, H.S., et al. Low-cost wearable cantilever-based nanoparticle sensor microsystem for personal health and safety monitoring. in Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers - 2015 18th International Conference on. 2015.
22. Thomas, S., et al., High frequency surface acoustic wave resonator-based sensor for particulate matter detection. Sensors and Actuators A: Physical, 2016. 244: p. 138-145.
23. Rayleigh, L., On waves propagated along the plane surface of an elastic solid. Proc. London Math. Soc., 1885. 17: p. 4.
24. Drafts, B., Acoustic wave technology sensors. Microwave Theory and Techniques, IEEE Transactions on,, 2001. 49: p. 795-802.
25. 楊啟榮, 李., and 施建富, 表面聲波生化感測器原理與應用技術. 科儀新知, 2004. 26(1): p. 63-75.
26. Gardner, J.W., V.K. Varadan, and O.O. Awadelkarim, Microsensors, MEMS, and smart devices. Vol. 1. 2001: Wiley Online Library.
27. 吳朗, 電子陶瓷: 壓電陶瓷. 1994: 全欣.
28. C. K. Campbell, Surface acoustic wave devices for mobile and wireless communications. 1998: Academic Press.
29. Spaight, R.N., Piezoelectric and Elastic Surface Waves on LiNbO3. 1969.
30. Gardner, J.W., et al., An electronic nose system for monitoring the quality of potable water. Sensors and Actuators B: Chemical, 2000. 69(3): p. 336-341.
31. Letcher, S., Surface acoustic wave devices. Oceanic Engineering, IEEE Journal of, 1986. 11(4): p. 487-488.
32. Ken-Ya, H., Surface acoustic wave devices in telecommunications modelling and simulation. NY: Springer, 2000.
33. Campbell, C., Surface acoustic wave devices and their signal processing applications. 2012: Elsevier.
34. William G. Lindsley, D.S.a.B.T.C., A two-stage cyclone using microcentrifuge tubes for personal bioaerosol sampling. Journal of Environmental Monitoring, 2006. 8(11): p. 7.
35. Weiner, B.B. What Is Particle Size Distribution Weighting: How to Get Fooled about What Was Measured and What it Means? 2011.
36. Jenny L. Hand, S.M.K., A New Method for Retrieving Particle Refractive Index and Effective Density from Aerosol Size Distribution Data. Aerosol Science and Technology, 2002. 36(10): p. 15.
37. 楊永瑞, 以表面聲波震盪電路為基礎之生化感測系統, in 國立清華大學. 2005.
38. Jetter, J.J., et al., Characterization of emissions from burning incense. Science of The Total Environment, 2002. 295(1–3): p. 51-67.
39. 鄭期元, 表面聲波氣體感測器應用於香菸偵測, in 奈米工程與微系統研究所. 2015, 國立清華大學.
40. Jun, K., M. Yoshikazu, and S. Showko, New Biosensor Using Shear Horizontal Surface Acoustic Wave Device. Japanese Journal of Applied Physics, 1993. 32(5S): p. 2376.