研究生: |
張家綸 Chang, Chia-Lun |
---|---|
論文名稱: |
高析出硬化中熵合金之開發與研究 Development of highly precipitation hardenable medium-entropy alloy |
指導教授: |
葉均蔚
Yeh, Jien-Wei |
口試委員: |
蔡哲瑋
李勝隆 洪健龍 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 麻時效鋼 、時效 、析出硬化 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
商用型18% Ni麻時效鋼經由固溶熱處理後,不論冷卻速率快慢皆會轉變成富有極大量差排的麻田散鐵組織。而後進行時效熱處理,從麻田散鐵基地相中析出分布均勻且極小的金屬間化合物,進而阻礙差排滑移來達到強化材料機械性質之目的。
本研究目的為將高熵效應應用於麻時效鋼,期望將麻時效剛之工作溫度提高,突破麻時效鋼之工作環境溫度使用之限制。從析出物 η-Ni3(Ti,Mo,Al) 成分以及結合焓的角度,額外添加Hf,Nb,Ta,V,Y,Zr等元素。額外添加 Y ( Yttrium )之系統,因與Ni之結合焓過負,亦即容易結合,導致均質化態即有 Ni-rich 相產生,使 Ms 溫度下降不易產生麻田散鐵相,後續之時效熱處理無法有效的達到析出硬化的效果。Hf與Zr對Fe之固溶度極低,使Laves phase 在鑄造態時則析出於晶界上,對強度沒有太大幫助,但卻對延展性與韌性有可預期的潛在危害。在僅有額外添加 Nb,Ta,V 之合金系統,有較強之固溶強化效果,可減少達到Peak hardness 之時間,但析出強化而增加之硬度值並無顯著增加。
從基地相去做改良,結果發現C25 合金於480 oC時效熱處理48小時其 Peak Hardness 可達 677 Hv,C42 合金於480 oC時效熱處理 400小時,其硬度已達747 Hv且尚未過時效,已超越商用 Grade 250 與 Grade 350 之硬度 ( 555 Hv 與 717 Hv ),此兩合金具有高強度結構材料之應用潛力。
18-Ni commercial maraging steel with addition of Hf,Nb,Ta,V,Y,Zr and C-series modified from 18-Ni 250 grade maraging steel were prepared by vacuum arc melting (VAM) and further investigation was carried out on microstructure and mechanical behavior as a function of aging condition. Owning to the negative value of mixing enthalpy between Ni and Y, Ni-rich phase, which would lower the Ms and As value thus causing reversion of austenite and affected the precipitation behavior, existed since homogenization state. Laves phase precipitating at grainboundary deteriorated the mechanical properties for Hf and Zr has little solubility in Fe. With addition of Nb,Ta and V, obvious solid solution strengthening effect was observed and less time was needed to reach the peak hardness. C25 reached the peak hardness of Hv 677 which was higher than 250 garde maraging steel when aging at 480 oC for 48h and C42 reached Hv 747 without any sign of over-aging after 400 hours of aging at 480 oC. C25M10 achieved the hardness of Hv 825 when aging at 480 oC for 24h, which has exceeded the hardness of 350 grade maraging steel.
[1] Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511.
[2] Miracle, D.B., High-Entropy Alloys: A Current Evaluation of Founding Ideas and Core Effects and Exploring “Nonlinear Alloys”. Jom, 2017. 69(11): p. 2130-2136.
[3] Tsai, M.-H. and J.-W. Yeh, High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014. 2(3): p. 107-123.
[4] Ye, Y.F., et al., High-entropy alloy: challenges and prospects. Materials Today, 2016. 19(6): p. 349-362.
[5] Mary, S.J., N. Rajan, and R. Epshiba, High entropy alloys properties and its applications–An over view. European Chemical Bulletin, 2015. 4(4-6): p. 279-284.
[6] Raabe, D., et al., From High-Entropy Alloys to High-Entropy Steels. steel research international, 2015. 86(10): p. 1127-1138.
[7] Zhang, Y., et al., Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014. 61: p. 1-93.
[8] Chen, R., et al., Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Materialia, 2018. 144: p. 129-137.
[9] Ye, Y.F., et al., Design of high entropy alloys: A single-parameter thermodynamic rule. Scripta Materialia, 2015. 104: p. 53-55.
[10] Li, Z., et al., Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016. 534(7606): p. 227-30.
[11] Deng, Y., et al., Design of a twinning-induced plasticity high entropy alloy. Acta Materialia, 2015. 94: p. 124-133.
[12] Stepanov, N.D., et al., Mechanical properties of a new high entropy alloy with a duplex ultra-fine grained structure. Materials Science and Engineering: A, 2018. 728: p. 54-62.
[13] Chakravarthi, K.V.A., et al., Microstructure, properties and hot workability of M300 grade maraging steel. Defence Technology, 2018. 14(1): p. 51-58.
[14] Jiao, Z.B., et al., Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels. Acta Materialia, 2013. 61(16): p. 5996-6005.
[15] Zhao, Y.L., et al., Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scripta Materialia, 2018. 148: p. 51-55.
[16] He, Y., et al., Age hardening and mechanical properties of a 2400 MPa grade cobalt-free maraging steel. Metallurgical and Materials Transactions A, 2006. 37(4): p. 1107-1116.
[17] Raabe, D., et al., Nanoprecipitate-hardened 1.5GPa steels with unexpected high ductility. Scripta Materialia, 2009. 60(12): p. 1141-1144.
[18] Qian, F., J. Sharp, and W.M. Rainforth, Microstructural evolution of Mn-based maraging steels and their influences on mechanical properties. Materials Science and Engineering: A, 2016. 674: p. 286-298.
[19] Raabe, D., et al., Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite. Acta Materialia, 2013. 61(16): p. 6132-6152.
[20] Forghani, F. and M. Nili-Ahmadabadi, Microstructural characteristics and second-phase particles in yttrium-bearing Fe-10Ni-7Mn martensitic steels. Journal of Rare Earths, 2014. 32(4): p. 326-333.
[21] Lian, Y., et al., Effects of cold rolling on the microstructure and properties of Fe-Cr-Ni-Mo-Ti maraging steel. Materials Science and Engineering: A, 2018. 712: p. 663-670.
[22] Shekhter, A., et al., Effect of aging and deformation on the microstructure and properties of Fe-Ni-Ti maraging steel. Metallurgical and Materials Transactions A, 2004. 35(3): p. 973-983.
[23] Hossein Nedjad, S., et al., Analytical transmission electron microscopy study of grain boundary precipitates in an Fe–Ni–Mn maraging alloy. Materials Science and Engineering: A, 2006. 438-440: p. 288-291.
[24] Hossein Nedjad, S., M. Nili Ahmadabadi, and T. Furuhara, Transmission Electron Microscopy Study on the Grain Boundary Precipitation of an Fe-Ni-Mn Maraging Steel. Metallurgical and Materials Transactions A, 2007. 39(1): p. 19-27.
[25] Hossein Nedjad, S., M. Nili Ahmadabadi, and T. Furuhara, Correlation between the intergranular brittleness and precipitation reactions during isothermal aging of an Fe–Ni–Mn maraging steel. Materials Science and Engineering: A, 2008. 490(1-2): p. 105-112.
[26] Millán, J., et al., Designing Heusler nanoprecipitates by elastic misfit stabilization in Fe–Mn maraging steels. Acta Materialia, 2014. 76: p. 94-105.
[27] Stiller, K., F. Danoix, and M. Hättestrand, Mo precipitation in a 12Cr–9Ni–4Mo–2Cu maraging steel. Materials Science and Engineering: A, 1998. 250(1): p. 22-26.
[28] Jiang, S., et al., Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017. 544(7651): p. 460-464.
[29] Li, K., et al., Strengthening of cobalt-free 19Ni3Mo1.5Ti maraging steel through high-density and low lattice misfit nanoscale precipitates. Materials Science and Engineering: A, 2018. 715: p. 174-185.
[30] Schnitzer, R., et al., Reverted austenite in PH 13-8 Mo maraging steels. Materials Chemistry and Physics, 2010. 122(1): p. 138-145.
[31] Tian, J., et al., A New Maraging Stainless Steel with Excellent Strength-Toughness-Corrosion Synergy. Materials (Basel), 2017. 10(11).
[32] Springer, H., M. Belde, and D. Raabe, Bulk combinatorial design of ductile martensitic stainless steels through confined martensite-to-austenite reversion. Materials Science and Engineering: A, 2013. 582: p. 235-244.
[33] Jiao, Z.B., et al., Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era. Materials Today, 2017. 20(3): p. 142-154.
[34] Jiao, Z.B., et al., Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles. Acta Materialia, 2015. 97: p. 58-67.
[35] Murthy, A.S., et al., Copper precipitation in cobalt-alloyed precipitation-hardened stainless steel. Scripta Materialia, 2012. 66(11): p. 943-946.
[36] Raabe, D., et al., Designing Ultrahigh Strength Steels with Good Ductility by Combining Transformation Induced Plasticity and Martensite Aging. Advanced Engineering Materials, 2009. 11(7): p. 547-555.
[37] Wang, M.M., et al., Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Materialia, 2014. 79: p. 268-281.
[38] Galindo-Nava, E.I., W.M. Rainforth, and P.E.J. Rivera-Díaz-del-Castillo, Predicting microstructure and strength of maraging steels: Elemental optimisation. Acta Materialia, 2016. 117: p. 270-285.
[39] Nioaţă, A., Researches regarding the optimization of thermal treatment depending on hardness for maraging 300 steel. Metalurgija, 2013. 52(2): p. 231-234.
[40] Sha, W., et al., Phase transformations in maraging steels, in Phase Transformations in Steels. 2012. p. 332-362.
[41] Boesch, W. and T. Cowan, Evolution of a Commercial 400 Ksi Grade Maraging Steel. 1968, SPECIAL METALS CORP NEW HARTFORD NY.
[42] Tian, J., et al., Role of Co in formation of Ni-Ti clusters in maraging stainless steel. Journal of Materials Science & Technology, 2018. 34(9): p. 1671-1675.
[43] Andersson, M., K. Stiller, and M. Hättestrand, Comparison of early stages of precipitation in Mo-rich and Mo-poor maraging stainless steels. Surface and Interface Analysis, 2007. 39(2-3): p. 195-200.
[44] Liu, P., A.H. Stigenberg, and J.-O. Nilsson, Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel. Acta metallurgica et materialia, 1995. 43(7): p. 2881-2890.
[45] Campbell, J., F.J. Barone, and D. Moon, The mechanical properties of the 18 per cent nickel maraging steels. 1964, BATTELLE MEMORIAL INST COLUMBUS OH DEFENSE METALS INFORMATION CENTER.
[46] Suk, J.I., et al., Development and properties of tungsten-bearing stainless maraging steels. Materials Science and Engineering: A, 1991. 138(2): p. 267-273.
[47] Dmitrieva, O., et al., Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Materialia, 2011. 59(1): p. 364-374.
[48] Capdevila, C., F.G. Caballero, and C.G.d. Andrés, Determination of Ms Temperature in Steels: A Bayesian Neural Network Model. ISIJ International, 2002. 42(8): p. 894-902.
[49] El-Fawkhry, M.K., et al., Development of Maraging Steel with Retained Austenite in Martensite Matrix. Materials Today: Proceedings, 2015. 2: p. S711-S714.
[50] Zhu, K., C. Magar, and M.X. Huang, Abnormal relationship between Ms temperature and prior austenite grain size in Al-alloyed steels. Scripta Materialia, 2017. 134: p. 11-14.
[51] Li, X. and Z. Yin, Reverted austenite during aging in 18Ni (350) maraging steel. Materials Letters, 1995. 24(4): p. 239-242.
[52] Casati, R., et al., Aging Behaviour and Mechanical Performance of 18-Ni 300 Steel Processed by Selective Laser Melting. Metals, 2016. 6(9).
[53] Takeuchi, A. and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 2005. 46(12): p. 2817-2829.
[54] Mahmoudi, A., et al., Aging behavior and mechanical properties of maraging steels in the presence of submicrocrystalline Laves phase particles. Materials Characterization, 2011. 62(10): p. 976-981.
[55] Yuan, Y., et al., Diffusion multiple study of the Co-Fe-Ni system at 800 °C. Calphad, 2019. 64: p. 149-159.
[56] Yoo, Y.K., et al., Identification of amorphous phases in the Fe–Ni–Co ternary alloy system using continuous phase diagram material chips. Intermetallics, 2006. 14(3): p. 241-247.
[57] Xiang, X.-D., et al., Individualized Pixel Synthesis and Characterization of Combinatorial Materials Chips. Engineering, 2015. 1(2): p. 225-233.