研究生: |
楊政勳 Yang, Jheng-Syun |
---|---|
論文名稱: |
優化粒徑層析法以提升胞外體分離效率 Optimization of Size Exclusion Chromatography for Isolation of Extracellular Vesicles |
指導教授: |
陳致真
Chen, Chih-Chen |
口試委員: |
游佳欣
Yu, Jia-Shing 許佳賢 Hsu, Chia-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 粒徑層析法 、胞外體 、柱長 、樣品體積 、流動相黏滯度 |
外文關鍵詞: | Size-Exclusion-Chromatograph, extracellular-vesicles, column-length, sample-volume, size-of-stationary-phase-particles |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於胞外體(extracellular vesicles, EVs)攜帶豐富的生物訊息如蛋白質與核醣核酸(mRNA, microRNA, ncRNA)等,不只負責在細胞間溝通,在醫療診斷上也扮演重要角色,也因為如此,胞外體近年來在學界備受重視,然而,為了要明確定義胞外體所代表的醫療訊息,標準化的分離方法勢必要被建立,目前最多人採用的分離方式為超高速離心法(ultracentrifugation),但在高轉速下會導致胞外體與蛋白質聚積甚至破裂,破壞原有的型態,相較之下,粒徑層析法(size exclusion chromatography, SEC)不但可以保有胞外體原本的特性,也可以在更短的時間內完成。
粒徑層析法是依據生物分子的大小來做分離,為了要讓粒徑層析法擁有成功的結果,必須要有適合的實驗設計,本篇文章提出了基於優化柱長、樣品體積、流動相黏滯度與固定相粒徑大小,以減少粒徑層析法中不理想的結果,藉由調整這些參數,可以讓我們了解對於不同大小的分子所需的洗出時間,並得到更高解析度、準確度與回收率的結果,理論上來說,所施加的樣品體積越小就能夠得到更好的解析度、固定相凝膠體的顆粒越小分離效能也會越高,然而樣品的狀態與固定相堆疊的方式,都會造成影響,使結果更難預測。實驗結果顯示,在優化柱長(Figure 21、Figure 22)、樣品體積(Figure 23、Figure 24)、移動相黏滯度(Figure 25-Figure 28)與縮小固定相粒子後(Figure 31-Figure 35),回收率與準確度都有明顯提升,最後,我們應用優化過後的參數,成功的將血漿中的胞外體與蛋白質分離(Figure 36-Figure 39)。
Extracellular vesicles (EVs) not only facilitate intercellular communication but also play an important role in the medical diagnosis. As a result, EV research has become an attractive field among the scientific community. However, to characterize the biomedical message carried by EVs, we must establish the standardization of methods employed for the isolation of vesicles. Ultracentrifugation has been the most widely used method, but the protein aggregates may be generated at high ve-locities, and vesicles may clump and rupture, ruining their original morphology. In contrast, the size exclusion chromatography (SEC) retains the original characteris-tics of EVs as well as can be completed in a shorter period of time.
SEC is a size-based separation of biological molecules. For this technique to be successful, a suitable experimental design must be implemented. In order to reduce undesirable results in SEC, this study proposes an optimization on the column length, sample volume, viscosity of the mobile phase, and the size of stationary phase parti-cles. By adjusting these parameters, we have attained a more precise elution time for different sized molecules, improved the resolution, accuracy, and recovery rate. In general, the sample volume should be kept to a minimum for the optimal resolution in SEC; also the smaller the particle size, a higher separation efficiency will be. However, the results are difficult to be predicted, since the sample status and column packing also plays a major role in the process. The experimental results show that the recovery rate or accuracy has been improved by changing the column length, sample volume (Figure 23 and Figure 24), mobile phase viscosity (Figure 25-Figure 28) and size of stationary phase particles (Figure 31-Figure 35). Lastly, by using the optimized SEC setting, we successfully separate the EVs from proteins in human plasma (Figure 36-Figure 39).
1. Skog, J., et al., Glioblastoma Microvesicles Transport RNA and Proteins that Promote Tumour Growth and Provide Diagnostic Biomarkers. Nature Cell Biology, 2008. 10: p. 1470.
2. Nilsson, J., et al., Prostate Cancer-derived Urine Exosomes: A Novel Approach to Biomarkers for Prostate Cancer. British Journal of Cancer, 2009. 100: p. 1603.
3. Bard, M.P., et al., Proteomic Analysis of Exosomes Isolated from Human Malignant Pleural Effusions. American Journal of Respiratory Cell and Molecular Biology, 2004. 31(1): p. 114-121.
4. Théry, C., et al., Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Current Protocols in Cell Biology, 2006. 30(1): p. 3.22.1-3.22.29.
5. Rood, I.M., et al., Comparison of Three Methods for Isolation of Urinary Microvesicles to Identify Biomarkers of Nephrotic Syndrome. Kidney International, 2010. 78(8): p. 810-816.
6. György, B., et al., Detection and Isolation of Cell-derived Microparticles are Compromised by Protein Complexes Resulting from Shared Biophysical Parameters. 2011. 117(4): p. e39-e48.
7. Maria Yu. Konoshenko, Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. 2017.
8. Gonda, D.D., et al., Neuro-oncologic Applications of Exosomes, Microvesicles, and Other Nano-Sized Extracellular Particles. Neurosurgery, 2013. 72(4): p. 501-510.
9. Hu, G., K. Drescher, Exosomal miRNAs: Biological Properties and Therapeutic Potential. 2012. 3(56).
10. Abels, E.R., Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cellular and Molecular Neurobiology, 2016. 36(3): p. 301-312.
11. Iraci, N., et al., Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. International Journal of Molecular Sciences, 2016. 17(2).
12. Camussi, G., et al., Exosome/microvesicle-mediated Epigenetic Reprogramming of Cells. American Journal of Cancer Research, 2010. 1(1): p. 98-110.
13. Bryzgunova, O.E., et al., Comparative Study of Extracellular Vesicles from the Urine of Healthy Individuals and Prostate Cancer Patients. PLOS ONE, 2016. 11(6): p. e0157566.
14. Franz, C., et al., Procoagulant tissue factor-exposing vesicles in human seminal fluid. Journal of Reproductive Immunology, 2013. 98(1): p. 45-51.
15. Yuana, Y., A. Sturk, Extracellular vesicles in physiological and pathological conditions. Blood Reviews, 2013. 27(1): p. 31-39.
16. Berckmans, R.J., et al., Cell-derived Vesicles Exposing Coagulant Tissue Factor in Saliva. 2011. 117(11): p. 3172-3180.
17. Van der Pol, E., et al., Classification, Functions, and Clinical Relevance of Extracellular Vesicles. 2012. 64(3): p. 676-705.
18. Nozaki, T., et al., Significance of a Multiple Biomarkers Strategy Including Endothelial Dysfunction to Improve Risk Stratification for Cardiovascular Events in Patients at High Risk for Coronary Heart Disease. Journal of the American College of Cardiology, 2009. 54(7): p. 601.
19. Ueba, T., et al., Plasma Level of Platelet-Derived Microparticles Is Associated with Coronary Heart Disease Risk Score in Healthy Men. Journal of Atherosclerosis and Thrombosis, 2010. 17(4): p. 342-349.
20. Tesselaar, et al., Microparticle-associated Tissue Factor Activity: a Link Between Cancer and Thrombosis. Journal of Thrombosis and Haemostasis, 2007. 5(3): p. 520-527.
21. Tesselaar, et al., Microparticle-associated Tissue Factor Activity in Cancer Patients With and Without Thrombosis. Journal of Thrombosis and Haemostasis, 2009. 7(8): p. 1421-1423.
22. Baglio, S.R., Mesenchymal Stem Cell Secreted Vesicles Provide Novel Opportunities in (stem) Cell-free Therapy. 2012. 3(359).
23. Mathivanan, Exosomes: Extracellular Organelles Important in Intercellular Communication. Journal of Proteomics, 2010. 73(10): p. 1907-1920.
24. Ha, D., Exosomes as Therapeutic Drug Carriers and Delivery Vehicles Across Biological Membranes: Current Perspectives and Future Challenges. Acta Pharmaceutica Sinica B, 2016. 6(4): p. 287-296.
25. Willms, E., et al., Cells Release Subpopulations of Exosomes with Distinct Molecular and Biological Properties. Scientific Reports, 2016. 6: p. 22519.
26. Synge, Fractionation of Hydrolysis Products of Amylose by Electrokinetic Ultrafiltration in an Agar-Agar Jelly. Biochemical, 1950.
27. Lindqvist, B. and T. StorgÅRds, Molecular-sieving Properties of Starch. Nature, 1955. 175: p. 511.
28. Wheaton, Non-Ionic Separation With Ion Exchange Resins. Annals of the New York Academy of Sciences, 1953. 57(3): p. 159-176.
29. Chase, Purification of Proteins by Adsorption Chromatography in Expanded Beds. 1994. 12(8): p. 296-303.
30. Kale, A., et al., Surface Structure of Size Exclusion Chromatography Stationary Phase. Journal of Microscopy, 2007. 227(2): p. 110-117.
31. Sweden, Size Exclusion Chromatography Principles and Methods. 2014.
32. Hong, P., A Review Size-Exclusion Chromatography for the Aanlysis of Protein Biotherapeutics and Their Aggregrates. Journal of Liquid Chromatography & Related Technologies, 2012. 35(20): p. 2923-2950.
33. AB, Sepharose and Sepharose CL. 2006.
34. Gonzalez-Tello, Density and Viscosity of Concentrated Aqueous Solutions of Polyethylene Glycol. Journal of Chemical & Engineering Data, 1994. 39(3): p. 611-614.
35. Codesido, S., et al., Impact of Particle Size Gradients on the Apparent Efficiency of Chromatographic Columns. Journal of Chromatography A, 2019.
36. Flodin, P., Methodological Aspects of Gel Filtration with Special Reference to Desalting Operations. Journal of Chromatography A, 1961. 5: p. 103-115.
37. Webber, J. and A. Clayton, How Pure Are Your Vesicles. Journal of Extracellular Vesicles, 2013. 2: p. 10.3402/jev.v2i0.19861.
38. Hagel, L., Apparent Pore Size Distributions of Chromatography Media. Journal of Chromatography A, 1996. 743(1): p. 33-42.
39. Feingold KR, G.C., Introduction to Lipids and Lipoproteins. 2000-Updated 2018 Feb 2.
40. Taylor, D.D. and S. Shah, Methods of Isolating Extracellular Vesicles Impact Down-stream Analyses of Their Cargoes. Methods, 2015. 87: p. 3-10.
41. Abramowicz, A., Proteomic Analysis of Exosomal Cargo: The Challenge of High Purity Vesicle Isolation. Molecular BioSystems, 2016. 12(5): p. 1407-1419.
42. Gámez-Valero, A., et al., Size-Exclusion Chromatography-based Isolation Minimally Alters Extracellular Vesicles' Characteristics Compared to Precipitating Agents. Scientific Reports, 2016. 6: p. 33641-33641.
43. Lozano-Ramos, et al., Size-exclusion Chromatography-based Enrichment of Extracellular Vesicles from Urine Samples. Journal of Extracellular Vesicles, 2015. 4(1): p. 27369.
44. Muller, L., et al., Isolation of Biologically-active Exosomes from Human Plasma. Journal of Immunological Methods, 2014. 411: p. 55-65.
45. Boing, A.N., et al., Single-step Isolation of Extracellular Vesicles by Size-exclusion Chromatography. J Extracell Vesicles, 2014. 3.
46. Czok, M., Effect of Sample Viscosity in High-performance Size-Exclusion Chromatography and Its Control. Journal of Chromatography A, 1991. 550: p. 705-719.
47. (https://labtestsonline.org.uk/tests/plasma-viscosity), L.T.O.U., Plasma viscosity. 2017.
48. Karimi, N., et al., Detailed Analysis of the Plasma Extracellular Vesicle Proteome After Separation from Lipoproteins. Cellular and Molecular Life Sciences : CMLS, 2018. 75(15): p. 2873-2886.
49. https://scrippslabs.com/protein-levels-in-human-plasma/, SCRIPPS.
50. Cox RA., Cholesterol, Triglycerides, and Associated Lipoproteins. 1990.
51. Information, M.p. Gel Filtration Chromatography.