簡易檢索 / 詳目顯示

研究生: 劉以航
Low, Yi-Hang
論文名稱: 液靜壓滑軌與滾珠滑軌應用於傳統車床之切削性能比較—振動與表面粗糙度分析
Comparison of Cutting Performance of Conventional Lathe Equipped with Hydrostatic Guideway and that Equipped with Linear Guideway—Vibration and Surface Roughness Analysis
指導教授: 林士傑
Lin, Shih-Chieh
口試委員: 王志宏
Wang, Jhy-Horng
楊佩良
Yang, Patricia
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 104
中文關鍵詞: 液靜壓滑軌切削實驗振動頻譜分析
外文關鍵詞: Hydrostatic guideway, Machining, Vibration spectrum analysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著對商品品質要求的提升,對於工具機的加工精度與性能的要求也越來越高。除了希望達到工具機自動化生產,也希望可以提高其穩定性及提升加工品質。液靜壓滑軌透過供油系統提供高壓油,在滑塊與滑軌間產生一層油膜分隔滑塊與滑軌,可以達到高剛性與低磨耗的性能。目前工具機的線性滑軌平台多採用線性滾珠滑軌,很少採用液靜壓滑軌,而在國外已有廠商將工具機的線性滑軌改用液靜壓滑軌進行整合提供更優異的加工性能。本研究之目的在經由實驗探討液靜壓滑軌對切削性能的影響,將液靜壓滑軌與滾珠滑軌搭配在傳統車床進行切削實驗,透過比較液靜壓滑軌和滾珠滑軌於切削過程產生的振動與加工後工件的表面粗糙度進一步分析,探討液靜壓滑軌對車床性能的影響。

    本研究使用實驗設計法(Design of Experiments, DOE)中的全因子分析,針對主軸轉速、切削深度、進給量、滑軌類型與工件材質,找出影響表面粗糙度與振動最顯著的因子,並將加工時量測到的振動時域訊號轉換成頻域訊號,探討引發振動的原因及液靜壓滑軌對振動的影響。


    With increasing demands on industrial processing quality, machine tool performance and accuracy are also rising as well. In addition to become the automatic process for the machine tool, the processing of machine tools is also expected to increase more stability and reduce the vibration generated during the machining. Hydrostatic guideway provides high pressure through the oil supply system to generate an oil film, so that the slider and the guideway becoming a slide surface, it can achieve a high stiffness and lower wear performance. In Taiwan, most of the machine tools platform are still using the linear ball guideway. However, there are some overseas company have already replaced the ball linear guideway to hydrostatic guideway. In this study, will do the cutting tests for use the same cutting parameter to compare performance with the hydrostatic guideway and linear ball guideway applied on conventional lathe.

    In this research, will use full factor analysis in DOE method to against for spindle speed, depth of cut, feed, guideway and cutting material which is most significant effect on surface roughness of workpiece and cutting vibration on the lathe cutting tool platform and chuck. Furthermore, the time domain of vibration signal will convert into frequency signal to analysis the source of vibration.

    摘要----------------------------------------------------------I Abstract-----------------------------------------------------II 誌謝--------------------------------------------------------III 目錄---------------------------------------------------------IV 圖目錄-------------------------------------------------------VI 表目錄-------------------------------------------------------IX 第一章 緒論--------------------------------------------------1 第二章 文獻回顧----------------------------------------------4 2.1 液靜壓軸承的工作原理----------------------------------4 2.2 車床與切削實驗之相關研究-----------------------------10 2.3 結語-------------------------------------------------26 第三章 研究方法---------------------------------------------27 3.1 研究流程---------------------------------------------27 3.2 系統架設與測試---------------------------------------28 3.3 切削實驗規劃-----------------------------------------36 第四章 工件準備與系統振動測試-------------------------------43 4.1 工件設計與模擬---------------------------------------43 4.2 系統振動實驗-----------------------------------------47 第五章 實驗結果與分析---------------------------------------60 5.1 切削實驗的規劃與實驗流程-----------------------------60 5.2 工件表面粗糙度分析-----------------------------------64 5.3 切削振動分析-----------------------------------------71 5.3.1 振動RMS值--------------------------------------------73 5.3.2 振動頻譜分析-----------------------------------------86 5.4 綜合比較---------------------------------------------96 第六章 結論------------------------------------------------100 6.1 研究成果--------------------------------------------100 6.2 未來展望--------------------------------------------101 參考文獻----------------------------------------------------102

    1. 蕭錫鴻、李坤穎。機械工業雜誌,“工具機基礎技術發展現況”。工業技術研究院。
    2. R. Lizarralde, A. Azkarate and O. Zelaieta (2009). New Developments in Lathes and Turning Centres. Machine Tools for high Performance Machining, L. N. López de Lacalle, A. Lamikiz (Eds), pp. 261-278.
    3. 台灣工具機暨零組件工業同業公會 (2020)。2021年1-8月工具機出口 速報。工具機零組件雜誌,檢自:TMBA
    4. Jun Zha, Yaolong Chen and Penghai Zhang (2016). Precision design of hydrostatic thrust bearing in rotary table and spindle. Journal of Engineering Manufacture, pp. 1-10.
    5. Satish C. Sharma , S.C. Jain, D.K. Bharuka (2002). Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing. Journal of Tribology International, Vol.(35), pp. 347-356.
    6. Zhiwei Wang, Wanhua Zhao*, Yaolong Chen and Bingheng Lu (2013). Prediction of the effect of speed on motion errors in hydrostatic guideways. Journal of Machine Tools & Manufacture, Vol.(64), pp. 78-84.
    7. W. Brian Rowe DSc (2012). FIMechE. Hydrostatic, Aerostatic and Hybrid Bearing Design. Oxford, UK:Butterworth-Heinemann.
    8. Tojiro Aoyama (2019). Reference Work Entry Hydrostatic Bearing. System Design Engineering, Keio University, Minato-ku, Tokyo Japan.
    9. S. To, W.B. Lee, and C.Y. (1997) .Ultraprecision Diamond Turning of Aluminium Single Crystals. Journal of Materials Processing Technology, Vol.(63), pp. 157-162.
    10. Jeong-Du Kim and Dong-Sik Kim (1996). Surface characteristics of magnetic-disk cutting using a single-crystal diamond tool in an ultraprecision lathe. Journal of Materials Processing Technology, Vol.(59), pp. 303-308.
    11. A.J. Yuan, M. Zhou and S. Dong (1996). Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. Journal of Materials Processing Technology, Vol.(62), pp. 327-330.
    12. K Venkata Rao, BSN Murthy and N Mohan Rao (2015). Experimental study on surface roughness and vibration of workpiece in boring of AISI 1040 steels. Journal of Engineering Manufacture, Vol.(5), pp. 703-712.
    13. Chao Wang, Kai Cheng, Nico Nelson, Worapong Sawangsri and Richard Rakowski (2014). Cutting force-based analysis and correlative observations on the tool wear in diamond turning of single crystal silicon. Journal of Engineering Manufacture, pp. 1-7.
    14. A Selvakumar, K Ganesan and PV Mohanram (2012). Dynamic analysis on fabricated mineral cast lathe bed. Journal of Engineering Manufacture, pp. 1-6.
    15. Philippe Revel, Nabil Jouini, Guillaume Thoquenne and Fabien Lefebvre (2015). High precision hard turning of AISI 52100 bearing steel. Journal of International Societies for Precision Engineering and Nanotechnology, pp. 10-11.
    16. Zinan Lu, Takeshi Yoneyama (1999). Micro cutting in the micro lathe turning system. Journal of Machine Tools & Manufacture, Vol.(39), pp. 1171-1183.
    17. 黃敏祥(2017)。“工具機振動噪音量測暨診斷分析技術”專刊,ARTC財團法人車輛研究測試中心。
    18. 谭祥军 (2016)。 “从这里学NVH 噪声、振动、模态分析的入门与进阶”書籍。
    19. 高更精密工業有限公司“頻譜-異常振動分析”。Retrieved from https://www.gng.tw/zh-tw/a3-4340/頻譜-異常振動分析.html
    20. James L. Taylor (1994). “The Vibration Analysis Handbook: A Practical Guide for Solving Rotation Machinery Problems” First Edition.
    21. 張弘霖 (2020)。液靜壓於傳統車床應用之系統整合設計及精密切削測試。國立清華大學動力機械工程學系,新竹市。
    22. 顏宏昇 (2021)。液靜壓車床之精密切削測試與性能分析。國立清華大學動力機械工程學系,新竹市。
    23. Jan-Eric Ståhl (2014). TOOL DETERIORATION Best Practices。SECO Tools ab Fagersta, Sweden.
    24. Kuo-Ming Tsai, Chia-Chin Wu(2013). Study on Working Parameters of Ultra-precision Machining. Institute of Precision Machinery & Manufacturing Technology National Chin-Yi Institute of Technology.
    25. Ferdinand P. Beer (2012). “Mechanics of Materials”,McGraw-Hill Companies, pp. Appendix D.
    26. 徐彬峻(2011)。普通高速車床振動診斷之研究。修平科技大學,台中市。

    QR CODE