簡易檢索 / 詳目顯示

研究生: 鄭凱元
Cheng, Kai-Yuan
論文名稱: 金與金-氧化鎵核殼奈米線場發射性質之研究
Study of Field Emission Properties of Gold and Gold in Gallium Oxide Core Shell Nanowires
指導教授: 周立人
Chou, Li-Jen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 79
中文關鍵詞: 核殼奈米線場發射金奈米線氧化鎵奈米線
外文關鍵詞: core-shell nanowire, Field emission, Au nanowires, Gallium oxide nanowires
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Field emission is a quantum-mechanical phenomenon which electrons tunneling from a condense matter to vacuum under an external electric filed. Due to the characters of high current density, small energy distribution, and no energy consumption during the emission process, field emission devices are widely used in vacuum microelectronics including field-emission-display, high power RF amplifier, electron sources, and nanolithography.
    Generally speaking, emitters with a lower work function will result in a higher emission current density. Although gold has a relatively high work function of 5.1 eV, with good conductivity and physical and chemical stability in high current operation, gold is still a promising candidate for field emitter material and a suitable system for investigating the fundamental essence of field emission. Both the field emission properties of single gold nanowire and whole chip of gold nanowires were measured. Simulations based on finite element method were carried out to investigate the screening effect, and aspect ratio effect on the field emission properties.
    In the second part, field emission properties of gold in gallium oxide core shell nanowires were also investigated. The existence of a 10 nm layer of Ga3O on the tip of nanowire was observed, which resulted in a remarkable enhancement of field emission properties.


      電子於外加電場下由凝態物質穿隧至真空中之量子力學現象稱為場發射現象。由於其高電流密度、能量分佈集中以及穿隧過程不需消耗能量之特色,場發射元件被廣泛的運用在真空微電子元件中,如高工率射頻放大器、電子發射源、奈米微影技術以及場發射顯示器中。
      一般而言,為得到較高的發射電流密度,發射源一般選取擁有較低之功函數材料。金雖然有較高之功函數,但是由於其極佳導電性、化學和物理穩定性,仍被視為極佳之場發射源之製作材料之一。在本研究中,我們對大面積以及單根金奈米線之場發射特性進行量測。並且藉由有限元素分析法之模擬,探討屏蔽效應及高寬必對於場發射性質的影響。
      在第二部份中,我們量測並對氧化鎵包金之場發射行為進行了探討。在實驗中,觀測到奈米線頂端存在一層10奈米之氧化三鎵。此一氧化三鎵之存在,能大幅提昇此一奈米結構之場發射特性。

    Contents Contents I Abstract III 摘要 IV Chapter 1 Introduction 1 1.1 Nanotechnology 1 1-2 Vapor-Liquid-Solid Method of Synthesizing 1D Nanostructure 3 1-3 Solid-Liquid-Solid Method of Synthesizing 1D Nanostructure 6 1-4 Motivations and Research Directions 8 Chapter 2 Background 10 2-1 Field Emission 10 2-1-1 Introduction 10 2-1-2Fowler-Nordheim theory 11 2-2 Finite Elements Method 16 2-2-1 Introduction 16 2-2-2 Finite Elements Method for Electrostatic Problems 17 Chapter 3 Experimental Procedures 20 3-1 Sample Preparation 20 3-1-1 Gold Nanowires 20 3-1-2 Gallium Oxide Core Shell Nanowires 20 3-2 Sample Characterization 21 3-2-1 Scanning Electron Microscopy (SEM) Analysis 21 3-2-2 Transmission Electron Microscopy (TEM) Analysis 21 3-2-3 Energy Dispersion Spectrometer (EDS) Analysis 22 3-2-4 Field Emission Measurement 23 Chapter 4 Results and Discussion 24 4-1 Gold Nanowires 24 4-1-1 Characterization of Gold Nanowires 24 4-1-2 Field Emission Properties of Gold Nanowires 27 4-1-3 Simulation of Gold Nanowires 31 4-1-4 Discrepancy between Simulation and Real Data 40 4-2 Gallium Oxide Core Shell Nanowires 44 4-2-1 Characterization of Gallium Oxide Core Shell Nanowires 44 4-2-2 Field Emission Properties of Gallium Oxide Core Shell Nanowires 48 Chapter 5 Summary and Conclusions 57 Appendix 59 A.1 The simulation results of spacing distance 59 A.2 Simulation result of aspect ratio 65 References 72 Chapter 1 72 Chapter 2 77 Chapter 4 78

    Chapter 1
    [1.1] Y. H. Yang, X. Y. Chen, Y. Feng, and G. W. Yang, “Physical Mechanism of Blue-Shift of UV Luminescence of a Single Pencil-Like ZnO Nanowire,” Nano Lett.,7, (2007), p.3879-3883.
    [1.2] J. M. Krans, J. M. van Rultenbeek, V. V. Fisun, I.K. Yanson, and L. J. de Jongh, ”The signature of conductance quantization in metallic point contacts,” Nature, 375, (1995), pp.767-769.
    [1.3] D. K. Sarkar, D. Brassard, and M. A. El Khakani,” Single-electron tunneling at room temperature in TixSi1−xO2 nanocomposite thin films,” Appl. Phys. Lett., 87, (2005), pp.253108-253110.
    [1.4] G. Markovich, C. P. Cllier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath,” Architectonic Quantum Dot Solids,” Acc. Chem. Res., 32, (1999), pp.415-423.
    [1.5] M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, ”Resonant tunneling of electrons via 20 nm scale InAs Quantum dot and magnetotunneling spectroscopy of its electronic states,” Appl. Phys. Lett., 70, (1997), pp.6-8.
    [1.6] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour,” Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device,” Science, 286, (1999), pp.1550-1552.
    [1.7] M. T. Bjoぴ rk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelsonb, ”Nanowire resonant tunneling diodes,” Appl. Phys. Lett., 81, (2002), pp.4458-4460.
    [1.8] X. Wang, J. Song, J. Liu and Z. L. Wang, “Direct-Current Nanogenerator Driven by Ultrasonic Waves,” Science, 316, (2007), pp102-105
    [1.9] R. K. Soong, G. D. Bachand, H. P. Neves, A. G. Olkhovets, H. G. Craighead, and C. D. Montemagno, “Powering an Inorganic Nanodevice with a Biomolecular Motor,” Science, 290, pp1555-1558
    [1.10] Y. Cui, and C. M. Lieber, “Functional Nanoscale Electronic Device Assembled Using Silicon Nanowire Building Blocks,” Science, 291, (2001), pp851-853
    [1.11] X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature, 409, (2001), pp66-69
    [1.12] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and Electrical Transport in Silicon Nanowires,” J. Phys. Chem. B, 104, (2000), pp5213-5216
    [1.13] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks,” Science, 294, (2001), pp1313-1317
    [1.14] M. Fleischer, J. Giber, and H. Meixner, “H2 induced changes in electrical conductance of β-Ga2O3 thin film system,” Appl. Phys. A, 54, (1992), pp560-566
    [1.15] Y. Chi, Q. Wei, H. Park, and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science, 293, (2001), pp1289-1292
    [1.16] C. M. Lieber, “The Incredible Shrinking Circuit,” Sci. Am., September (2001), pp59-64
    [1.17] R. Dagani, “Building from the Bottom Up,” Chem. Eng. News, , October, (2000), pp27-39
    [1.18] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. William, “A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology,” Science, 280, (1998), pp1716 -1721
    [1.19] R. S. Wagner, and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett., 4, (1964), p89
    [1.20] Y. Wu, and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater., 12, (2000), pp605-607
    [1.21] Y. J. Zhang, Q. Zhang, N. L. Wang, Y. J. Yan, H. H. Zhou, and J. Zhu, “Synthesis of Thin Si Whiskers (Nanowires) Using SiCl4,” J. Cryst. Growth, 226, (2001), pp185-191
    [1.22] J. Westewater, D. P. Gosain, S. Tomiya, and S. Usui, “Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction,” J. Vac. Sci. Technol. B, 15, (1997), pp554-557
    [1.23] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalystic Growth and Characterization of Gallium Nitride Nanowires,” J. Am. Chem. Soc., 123, (2001), pp2791-2798
    [1.24] J. Zhang, X. S. Peng, X. F. Wang, Y. W. Wang, and L. D. Zhang, “Mirco-Raman Investigation of GaN Nanowires Prepared by Direct Reaction Ga with NH3,” Chem. Phys. Lett., 345, (2001), pp372-376
    [1.25] M. Q. He, P. Z. Zhou, S. N. Mohammad, G. L. Harris, J. B. Halpern, R. Jacobs, W. L. Sarney, and L. Salamanca-Riba, “Growth of GaN Nanowires by Direct Reaction of Ga with NH3,” J. Cryst. Growth, 231, (2001), pp357-365
    [1.26] C. C. Chen, and C. C. Yeh, “Large-Scale Catalystic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater., 12, (2000), pp738-741
    [1.27] Y. Wu and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc., 123, (2001), pp 3165-3166.
    [1.28] M. Paulose, O. K. Varghese, and C. A. Grimes, “Synthesis of Gold-Silica Composite Nanowires through Solid-Liquid-Solid Phase Growth,” J. Nanosci. Nanotech,3, (2003), pp.341-346.
    [1.29] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “ Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett., 323, (2000), pp 224-228.
    [1.30] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (SLS) Mechanism,” Physica E, 9, (2001), pp 305-309.
    [1.31] G.N. Fursey, "Field Emission in Vacuum Microelectronics," Kluwer Academic, New York, 2005
    [1.32] A. Modinos, "Field, Thermionic and Secondary Electron Emission Spectroscopy," Plenum, New York, 1984
    [1.33] C. A. Spindt, I. Brodie, L. Humpnrey, and E. R. Westerberg, “Electrical properties of thin-film field emission cathodes with molybdenum cones,” J. Appl. Phys., Vol. 47, p. 5248, 1976.
    [1.34] R. H. Fowler and L. W. Nordheim, “Electron emission in intense field,” Proc. R. SOC. A229, p. 173, 1928.
    [1.35] R. E. Burgess, H. Kroemer, and J. M. Honston, “Corrected value of Fowler-Norheim field emission function v(y) and s(y),” Phys. Rev., Vol. 1, No. 4, p. 515, 1953.
    [1.36] D. W. Branston and D. Stephani, “Field emission from metal-coated Silicon tips,” IEEE Trans. Electron Devices, Vol. 38, No. 10, p. 2329, 1991.
    [1.37] S. Itoh AND M. Tanaka, “Current Status of Field-Emission Displays,” Proceedings of the IEEE, VOL. 90, NO. 4, APRIL 2002.
    [1.38] Mu-Tung Chang, Chih-Yen Chen, Li-Jen Chou and Lih-Juann Chen, "Core Shell Chromium Silicide Silicon Nanopillars: A Contact Material for Future Nanosystems," ACS Nano, Vol. 3, Issue: 11, pp. 3376-3780, (2009).
    [1.39] Chin-Hua Hsieh, Mu-Tung Chang, Yu-Jen Chien, Li-Jen Chou, Lih-Juann Chen and Chii-Dong Chen, "Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires: for Nitride Based Logic Nanodevices," Nano Letters, Vol. 8, No. 10, p 3288 - 3292, (2008).
    [1.40] Yi W K, Jeong T, Yu S G, et al., "Field-emission characteristics from wide-bandgap material-coated carbon nanotubes," Adv. Matter., Vol.14, pp.1464-+, (2002)
    [1.41] Lee J, Lee W, Park E, et al, "The electric field enhancements by single-walled carbon nanotubes in In2S3/In2O3 photoelectrochemical solar cells," Appl. Phys. Lett., Vol.96, pp.173506 (2010)
    [1.42] Lysenkov D, Engstler J, Dangwal A, et al., "Nonaligned carbon nanotubes anchored on porous alumina: Formation, process modeling, gas-phase analysis, and field-emission properties," Small, Vol.3, pp.974-985 (2007)

    Chapter 2
    [2.1] J. A. Nation et al., Proceeding IEEE, Vol.87 , pp.865, (1999)
    [2.2] R. H. Fowler and L. W. Nordheim, “Electron emission in intense field,” Proc. R. SOC. A229, p. 173, 1928.
    [2.3] R. E. Burgess, H. Kroemer, and J. M. Honston, “Corrected value of Fowler-Norheim field emission function v(y) and s(y),” Phys. Rev., Vol. 1, No. 4, p. 515, 1953.
    [2.4] G.N. Fursey, "Field Emission in Vacuum Microelectronics," Kluwer Academic, New York, 2005
    [2.5] A. Modinos, "Field, Thermionic and Secondary Electron Emission Spectroscopy," Plenum, New York, 1984

    Chapter 4
    [4.1] Dangwal A, Pandey CS, Muller G, et al., "Field emission properties of electrochemically deposited gold nanowires," Appl. Phys. Lett., Vol.92, pp.063115 (2008)
    [4.2] Dangwal A, Muller G, Maurer F, et al., "Field emission properties of bare and gold-coated nickel nanowires grown in polymer ion-track membranes," JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, Vol.25, pp.586-589 (2007)
    [4.3] Navitski A, Muller G, Sakharuk V, et al., "Efficient field emission from structured gold nanowire cathodes," EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, Vol.48, pp.30502 (2009)
    [4.4] Guihua Chen, Weiliang Wang, Jie Peng, Zhibing Li ,et al., "Screening effects on field emission from arrays of (5,5) carbon nanotubes: Quantum mechanical simulations," Phys. Rev. B., 2007
    [4.5] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, and L. Schlapbach, "Scanning field emission from patterned carbon nanotube films," Appl. Phys. Lett., (2000)
    [4.6] K. B. K. Teo, M. Chhowalla, et al. , "Uniform patterned growth of carbon nanotubes without surface carbon," Appl. Phys. Lett., Vol: 79, Issue: 10, (2001)
    [4.7] N. F. Mott and R. W. Gurney,"Electronic Processes in Ionic Crystals," Oxford University Press, New York, (1940)
    [4.8] Brodie I, Spindt CA, "VACUUM MICROELECTRONICS," Advances in Electronics and Electron Physics, Vol.83, pp.1-106 (1992)
    [4.9] Yi W K, Jeong T, Yu S G, et al., "Field-emission characteristics from wide-bandgap material-coated carbon nanotubes," Adv. Matter., Vol.14, pp.1464-+, (2002)
    [4.10] Lee J, Lee W, Park E, et al, "The electric field enhancements by single-walled carbon nanotubes in In2S3/In2O3 photoelectrochemical solar cells," Appl. Phys. Lett., Vol.96, pp.173506 (2010)
    [4.11] Lysenkov D, Engstler J, Dangwal A, et al., "Nonaligned carbon nanotubes anchored on porous alumina: Formation, process modeling, gas-phase analysis, and field-emission properties," Small, Vol.3, pp.974-985 (2007)
    [4.12] Gowtham S, Deshpande M, Costales A, et al., "Structural, energetic, electronic, bonding, and vibrational properties of Ga3O, Ga3O2, Ga3O3, Ga2O3, and GaO3 clusters," Journal of Physical Chemistry B, Vol.09, pp.14836-14844 (2005)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE