研究生: |
劉祖德 Liu, Tzu-De |
---|---|
論文名稱: |
以電漿輔助化學氣相沉積法鍍製之低氮氮化矽薄膜經熱退火後光學特性及室溫機械損耗之研究 Study of annealing effect on the optical properties and the room temperature mechanical loss of the silicon-rich silicon nitride films deposited with PECVD |
指導教授: |
趙煦
Chao, Shiuh |
口試委員: |
李正中
Lee, Cheng-Chung 陳至信 Chen, Jyh- Shin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 重力波 、機械損耗 、光學吸收 、退火 、電漿輔助化學氣相沉積 |
外文關鍵詞: | Gravitational-wave, mechanical loss, optical absorption, anneal, PECVD |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷射干涉重力波偵測組織LIGO(Laser Interferometer of Gravitational-wave Observatory)利用大型麥克森干涉儀量測重力波訊號。因為重力波訊號非常微弱,容易受背景雜訊影響,所以降低背景雜訊可以有效提升重力波偵測器的靈敏度,探測更為微弱的重力波訊號。根據理論雜訊頻譜圖得知,在頻率約100赫茲附近總體雜訊最低,此頻率附近主要影響的雜訊為源自於雷射系統的Quantum noise以及由高反射鏡鍍膜材料所貢獻的Coating Brownian noise。本實驗室致力於降低Coating Brownian noise。根據統計熱力學的fluctuation dissipation理論,薄膜的Coating Brownian noise與薄膜的機械損耗成正比,我們藉由量測薄膜的機械損耗評估薄膜的Coating Brownian noise。此外,高反射鏡鍍膜材料需要極佳的光學性質,以減少因為吸收造成的額外熱雜訊,所以降低薄膜之光學吸收也非常重要。
在之前的研究中,低氮-氮化矽薄膜已經有很低的光學吸收及機械損耗。本論文試著利用退火製程繼續降低此材料的光學吸收及機械損耗,並研究不同的退火溫度對薄膜光學及機械性質的影響,如成分比例、結晶、折射率、膜厚、楊氏係數、應力及鍵結含量等。
研究結果顯示:低氮-氮化矽薄膜經過退火350度30分鐘後消光係數從1.51×〖10〗^(-5)下降至1.02×〖10〗^(-5),但隨退火溫度繼續上升消光係數反而增加;而室溫機械損耗則隨著退火溫度上升而減少,在退火450度30分鐘後室溫機械損耗從7.49×〖10〗^(-5)下降至3.24×〖10〗^(-5)。此外,我們發現低氮-氮化矽薄膜的光學吸收會隨著Si-H鍵含量減少而上升;而室溫機械損耗則會隨著Si-H鍵含量減少而下降。
The group of Laser Interferometer of Gravitational-wave Observatory (LIGO) built large Michelson interferometers to detect gravitational wave directly. The sensitivity of these detectors around 100 Hz are limited by the quantum noise and coating Brownian noise, which are contributed from the laser system and the coating materials of high reflective mirror, respectively. Our laboratory focused on reducing the coating Brownian noise. According to the fluctuation-dissipation theorem, there is a positive correlation between the coating Brownian noise and the mechanical loss of films. So we measured the mechanical loss of films to calculate the related coating Brownian noise. In addition, it is also important to reduce the optical absorption of the films.
It has been discovered in the previous study that the silicon-rich silicon nitride film has the low optical absorption and mechanical loss. In our research, we tried to further reduce optical absorption and mechanical loss by using the annealing process. In addition, we investigated the effects of optical and mechanical properties of thin films in different annealing temperatures such as N/Si ratio, structure, refractive index, physical thickness, Young's modulus, stress, and bond concentration.
We found that the optical absorption of silicon-rich silicon nitride films decreases from 1.51×〖10〗^(-5) to 1.02×〖10〗^(-5) in 350℃ annealed for 30 minutes, but while the temperature keeps on rising, the optical absorption increases. The result also shows that the higher annealing temperature gets, the lower room-temperature mechanical loss reaches; the room-temperature mechanical loss drops from 7.49×〖10〗^(-5) to 3.24×〖10〗^(-5) in 450℃ annealed in 30 minutes. In conclusion, we observed that there is a negative correlation between the optical absorption and the number of Si-H bonds; in contrast, the relationship between the room-temperature mechanical loss of silicon-rich silicon nitride films and the number of Si-H bonds is a positive correlation.
[1] A. Einstein, Die grundlage der allgemeinen relativit¨atstheorie, Annalen der Physik 49 (1916) 769
[2] R. A. Hulse et al., Discovery of a pulsar in a binary system, The Astrophysical journal 195 (1975) L51
[3] B. P. Abbott, et al. Observation of Gravitational Waves from a Binary Black Hole Merger. PRL 116, 061102, 2016.
[4]‘The Nobel Prize in Physics 2017’. Nobelprize.org. Nobel Media AB 2014. Web. 9 Oct 2017. http://www.nobelprize.org/nobel_prizes/physics/laureates/2017/
[5] LIGO Scientific Collaboration Group. Instrument science white paper. LIGO- T1800133-v3: 26, Jun. 2018,
[6] Huang-Wei Pan, Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector. PHYSICAL REVIEW D 97, 022004 (2018)
[7] Gregory M Harry, et al. Titania-doped tantala/silica coatings for gravitational-wave detection.Classical and Quantum Gravity,24,405-415,2007
[8] 吳孟筠,利用電漿輔助化學氣相沉積法鍍製四分之一波長厚度SiN0.40/SiO2堆疊之室溫機械損耗,國立清華大學,碩士論文,2016
[9] 康乃中,光熱共光路干涉儀系統之設置與電漿輔助化學氣象沉積法沉積之氮化矽薄膜光學吸收研究,國立清華大學,碩士論文,2017
[10]Murray, P, et al. Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems. Physical Review D, 92, 062001,2015
[11] I W Martin, et al. Effect of heat treatment on mechanical dissipation in Ta2O5 coatings. Class. Quantum Grav. 27,225020,2010
[12] 陳信傑,以電漿輔助化學氣相沉積法鍍製於矽懸臂之氮化矽其熱退火後對於室溫機械損耗之影響,國立清華大學,碩士論文,2017
[13] Mishima Y, et al. Investigation of the bubble formation mechanism in a-Si:H films by Fourier-transform infrared mirospectroscopy. J. Appl. Phys, 64, 8, 1988.
[14] P.-H. Wu, et al. Mechanical property characterization of sputtered and plasma enhanced chemical deposition (PECVD) silicon nitride films after rapid thermal annealing. Sensors and Actuators A 168 (2011) 117–126
[15] Cai et al. Effects of rapid thermal anneal on refractive index and hydrogen content of plasmaenhanced chemical vapor deposited silicon nitride films, J. Appl. Phys. 80 (9), 1 November 1996
[16] D.N.Wright, EFFECT OF ANNEALING ON PECVD SILICON NITRIDE FILMS, 22nd European Photovoltaic Solar Energy Conference, 3-7 September 2007, Milan, Italy
[17] Anastasia Zelenina, Silicon nanocrystals in various dielectric matrices: structural and optical properties
[18] Martı´nez et al. Thermally induced changes in the optical properties of SiNx :H films deposited by the electron cyclotron resonance plasma method, J. Appl. Phys., Vol. 86, No. 4, 15 August 1999
[19] 張臨安,以電漿輔助化學氣象沉積法鍍製高氮氮化矽薄膜其熱退火對光學特性及機械特性之影響,國立清華大學,碩士論文,2018
[20] Hasegawa. S ,et al. Connection between Si− N and Si−H Vibrational Properties in Amorphous SiNx: H Films. Philos. Mag. B 1989, 59, 365−375
[21] Shanks H,et al. Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon. Phys. Status Solidi 100,43,1980
[22] Fang C J , et al. The hydrogen content of a-Ge:H and a-Si:H as determined by ir spectroscopy, gas evolution and nuclear reaction techniques. Journal of Non-Crystalllne Solids 35 & 36 255-60,1980
[23] Morimoto A, et al. Properties of Hydrogenated Amorphous Si-N Prepared by Various Methods .Japanese Journal of Appiled Physics 24, 1394-8,1985
[24] L Wang, et al. Characterization of nitrogen-rich silicon nitride films grown by the electron cyclotron resonance plasma technique. Semicond. Sci. Techn. 18 , 633-641,2003
[25].Morimoto A, Tsujimura Y, Kumeda M, and Shimizu T 1985 Japanese Journal of Appiled Physics 24, 1394-8
[26].Makino T and Maeda M 1986 Japanese Journal of Appiled Physics 25 1300-6
[27].Makino T 1983 Journal of the Electrochemistry Society 130 450-5
[28] R. Birney et al., "Exploring the fundamental limits of NIR absorption in amorphous silicon", LIGO document: LIGO-P1800148, (2018)
[29] Ma´ rtil et al. Rapid thermally annealed plasma deposited SiNx :H thin films: Application to metal–insulator–semiconductor structures with Si, In0.53Ga0.47As,and InP, J. Appl. Phys., Vol. 94, No. 4, 15 August 2003
[30] 王薇雅,應用於雷射干涉重力波偵測器開發工作之單晶矽懸臂梁之機械震動性質研究,國立清華大學,碩士論文, 2013
[31] 李家暐,探討應用於雷射干涉重力波偵測器之以電漿輔助化學氣象沉積法製備於矽懸臂之氮化矽薄膜之材料特性與機械損耗,國立清華大學,碩士論文, 2013
[32] B. S. Berry, W. C. Pritchet. Vibrating reed internal friction apparatus for films and foils. IBM journal of research and development, 1975, 19: 334
[33] Makino T and Maeda M 1986 Japanese Journal of Appiled Physics 25 1300-6
[34] Makino T 1983 Journal of the Electrochemistry Society 130 450-5
[35] H. Shanks, et al. Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon.Phys. Stauts Solidi B 100, 43, 1980
[36] R. G. Christian. The theory of oscillating-vane vacuum gauges. Pergamon Press Ltd, Feb. 1966, 16: 175-178
[37] A. W. Heptonstall. Characterisation of Mechanical Loss in Fused Silica Ribbons for use in Gravitational Wave Detector Suspensions. Ph. D. thesis, University of Glasgow, Aug. 2004
[38] 歐政勳,室溫下量測機械損耗之系統設置與量測熔融石英玻璃懸臂樑及單晶矽懸臂之初部量測分析,國立清華大學碩士論文, 2012
[39] M. A. Hopcroft, W. D. Nix, T. W. Kenny. What is the Young’s modulus of silicon? Journal of Microelectromechanical system, Apr. 2010, 19: 229
[40] T. Y. Zhang, Y. J. Su, C. F. Qian, et al. Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta mater., Mar. 2000, 48: 2843-2857
[41] B. A. Walmsley, Y. Liu, X. Z. Hu, et al. Poisson’s ratio of low-temperature pecvd silicon nitride thin films. J. Microelectromechanical Syst., Jun. 2007, 16: 622-627
[42] V. Ziebart, O. Paul, U. Munch, et al. Thin-Films: stresses and mechanical properties VII: A novel method to measure Poisson’s ratio of thin films. Cambridge University Press, 1998, 27-32, ISBN: 978-1-107-41330-6
[43] C. L. Dai. A resonant method for determining mechanical properties of Si3N4 and SiO2 thin films. Materials Letters, Jun. 2007, 61: 3089-3092