研究生: |
謝憲毅 Hsieh, Hsien-Yi |
---|---|
論文名稱: |
機器學習增強式量子態斷層掃描 Machine learning enhanced quantum state tomography |
指導教授: |
李瑞光
Lee, Ray-Kuang |
口試委員: |
吳欣澤
Wu, Shin-Tza 高英哲 Kao, Ying-Jer 賴暎杰 Lai, Yin-chieh 陳彥宏 Chen, Yen-Hung. 陳應誠 Chen, Ying-Cheng 吳俊毅 Wu, Jun-Yi |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 量子態重建 、量子態斷層掃瞄 、量子光學 、機器學習 、光學壓縮態 、量子機器學習 |
外文關鍵詞: | Quantum state reconstruction, Quantum state tomography, Quantum optics, Machine learning, Optical squeezed state, Quantum machine learning |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們主要透過機器學習以及一些數值計算來建立一套嶄新的估計光學壓縮態的方法。當我們使用光學壓縮態去進行重力波偵測或者是量子資訊等應用時,診斷此量子態的強健性有其必要性。基於此,量子態斷層掃描 (QST) 是一個必要被充份研究了解的數值工具。在連續變數的 QST 領域中,我們首次的提出使用監督式機器學習模型來完成量子態重建的工作。這個模型在訓練的過程被要求盡可能提高演算法的保真度,在推估量子態時降低演算法本身推論時會產生的損失。這個經過良好訓練的神經網路模型能夠精準且快速的重建量子態,它能評估環境造成量子態多少程度的劣化。我們訓練出來的模型可以讀取較少且不用固定相位的資料,這可以讓實驗學家簡化測量壓縮態的流程並提升取數據的效能。並且,我們提出了參數估計的機器學習模型,它具有更加的輕巧的特點。這樣讓我們易於將這個系統安裝在實驗室的環境中。透過高速的密度
矩陣還有維格納函數重建以及參數估計,這讓我們更為接近即時量子態斷層掃描。並且,有效率的 QST 也讓我們成功的重建相空間的動力學。這個研究也讓我們了解到未來可能如何推廣到更廣泛之量子態重建甚至量子過程的重建,以及其可能的障礙在那。我們也將探討這些問題並指出未來可能的研究方向。
In this thesis, we mainly use machine learning and some numerical calculations to establish a new method for estimating the optical squeezed state. When we use optical squeezed states for gravitational wave detection or quantum information applications, the ability to diagnose quantum states is important. Based on this, quantum state tomography (QST) is a numerical tool that must be well studied and understood. In the field of QST for continuous variables, we propose for the first time the use of a supervised machine learning model to complete the quantum state reconstruction. This model is required to improve the fidelity of the algorithm during the training process, and when estimating the quantum state reduce the loss that the algorithm itself will infer. This well-trained neural network can accurately and quickly reconstruct the quantum state, and it can evaluate how much
the quantum state is degraded by the environment. The model we trained can read less and no fixed-phase data, which allows experimentalists to simplify the process of measuring the squeezed state and improve the efficiency of data acquisition. Furthermore, we propose a machine learning model for parameter estimation, which is more lightweight. This allows us to easily install this system in a laboratory environment. Through high-speed density matrix and Wigner function reconstruction and parameter estimation, this brings us closer to real-time quantum state tomography. Moreover, the efficient QST also allows us to successfully reconstruct the dynamics of the phase space. This research also allows us to understand how the reconstruction of non-Gaussian quantum states and even quantum processes may be generalized in the future, and the possible obstacles there. We will
also discuss these issues and point out possible future research directions.
[1] H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A, vol. 13,
pp. 2226–2243, Jun 1976.
[2] U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light
generation,” Physica Scripta, vol. 91, p. 053001, apr 2016.
[3] C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D, vol. 23,
pp. 1693–1708, Apr 1981.
[4] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and
S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys., vol. 84, pp. 621–669, May
2012.
[5] S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,”
Rev. Mod. Phys., vol. 77, pp. 513–577, Jun 2005.
[6] H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 db squeezed
states of light and their application for the absolute calibration of photoelectric quantum
efficiency,” Phys. Rev. Lett., vol. 117, p. 110801, Sep 2016.
[7] O. Pfister, “Continuous-variable quantum computing in the quantum optical frequency
comb,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 53, p. 012001,
nov 2019.
[8] C. Fabre and N. Treps, “Modes and states in quantum optics,” Rev. Mod. Phys., vol. 92,
p. 035005, Sep 2020.
[9] Z. Hradil, “Quantum-state estimation,” Phys. Rev. A, vol. 55, pp. R1561–R1564, Mar
1997.
[10] E. S. Tiunov, V. V. T. (Vyborova), A. E. Ulanov, A. I. Lvovsky, and A. K. Fedorov,
“Experimental quantum homodyne tomography via machine learning,” Optica, vol. 7,
pp. 448–454, May 2020.
[11] K. Albertsson, P. Altoe, D. Anderson, M. Andrews, J. P. A. Espinosa, A. Aurisano,
L. Basara, A. Bevan, W. Bhimji, D. Bonacorsi, P. Calafiura, M. Campanelli, L. Capps,
F. Carminati, S. Carrazza, T. Childers, E. Coniavitis, K. Cranmer, C. David, D. Davis,
J. Duarte, M. Erdmann, J. Eschle, A. Farbin, M. Feickert, N. F. Castro, C. Fitzpatrick,
M. Floris, A. Forti, J. Garra-Tico, J. Gemmler, M. Girone, P. Glaysher, S. Gleyzer,
V. Gligorov, T. Golling, J. Graw, L. Gray, D. Greenwood, T. Hacker, J. Harvey, B. Hegner, L. Heinrich, B. Hooberman, J. Junggeburth, M. Kagan, M. Kane, K. Kanishchev,
P. Karpiński, Z. Kassabov, G. Kaul, D. Kcira, T. Keck, A. Klimentov, J. Kowalkowski,
75
L. Kreczko, A. Kurepin, R. Kutschke, V. Kuznetsov, N. Köhler, I. Lakomov, K. Lannon,
M. Lassnig, A. Limosani, G. Louppe, A. Mangu, P. Mato, H. Meinhard, D. Menasce,
L. Moneta, S. Moortgat, M. Narain, M. Neubauer, H. Newman, H. Pabst, M. Paganini,
M. Paulini, G. Perdue, U. Perez, A. Picazio, J. Pivarski, H. Prosper, F. Psihas, A. Radovic,
R. Reece, A. Rinkevicius, E. Rodrigues, J. Rorie, D. Rousseau, A. Sauers, S. Schramm,
A. Schwartzman, H. Severini, P. Seyfert, F. Siroky, K. Skazytkin, M. Sokoloff, G. Stewart,
B. Stienen, I. Stockdale, G. Strong, S. Thais, K. Tomko, E. Upfal, E. Usai, A. Ustyuzhanin,
M. Vala, S. Vallecorsa, J. Vasel, M. Verzetti, X. Vilasís-Cardona, J.-R. Vlimant, I. Vukotic,
S.-J. Wang, G. Watts, M. Williams, W. Wu, S. Wunsch, and O. Zapata, “Machine learning
in high energy physics community white paper,” Journal of Physics: Conference Series,
vol. 1085, p. 022008, sep 2018.
[12] A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys., vol. 81, pp. 299–332, Mar 2009.
[13] B. Mu, H. Qi, I. R. Petersen, and G. Shi, “Quantum tomography by regularized linear
regressions,” Automatica, vol. 114, p. 108837, 2020.
[14] J. A. Smolin, J. M. Gambetta, and G. Smith, “Efficient method for computing the
maximum-likelihood quantum state from measurements with additive gaussian noise,”
Phys. Rev. Lett., vol. 108, p. 070502, Feb 2012.
[15] K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Phys. Rev. A, vol. 40, pp. 2847–
2849, Sep 1989.
[16] A. I. Lvovsky, “Iterative maximum-likelihood reconstruction in quantum homodyne tomography,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 6, pp. S556–
S559, may 2004.
[17] J. Řeháček, Z. c. v. Hradil, E. Knill, and A. I. Lvovsky, “Diluted maximum-likelihood
algorithm for quantum tomography,” Phys. Rev. A, vol. 75, p. 042108, Apr 2007.
[18] Z. Hradil, “Quantum-state estimation,” Phys. Rev. A, vol. 55, pp. R1561–R1564, Mar
1997.
[19] H. Seifoory, S. Doutre, M. M. Dignam, and J. E. Sipe, “Squeezed thermal states: the result
of parametric down conversion in lossy cavities,” J. Opt. Soc. Am. B, vol. 34, pp. 1587–
1596, Aug 2017.
[20] S. M. Ross, Simulation, vol. 4 of 10. The address: Academic Press, Inc.6277 Sea Harbor
Drive Orlando, FLUnited States, 4 ed., 7 2006.
[21] M. S. Kim, F. A. M. de Oliveira, and P. L. Knight, “Properties of squeezed number states
and squeezed thermal states,” Phys. Rev. A, vol. 40, pp. 2494–2503, Sep 1989.
[22] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel, “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural Computation, vol. 1, pp. 541–551, 12 1989.
[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–
778, 2016.
76
[24] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), (Los Alamitos, CA, USA), pp. 2261–2269, IEEE Computer Society, jul 2017.
[25] S. Abdoli, P. Cardinal, and A. Lameiras Koerich, “End-to-end environmental sound classification using a 1d convolutional neural network,” Expert Systems with Applications,
vol. 136, pp. 252–263, 2019.
[26] S. Lohani, B. T. Kirby, M. Brodsky, O. Danaci, and R. T. Glasser, “Machine learning
assisted quantum state estimation,” Machine Learning: Science and Technology, vol. 1,
p. 035007, jul 2020.
[27] J. E. Moyal, “Quantum mechanics as a statistical theory,” Mathematical Proceedings of
the Cambridge Philosophical Society, vol. 45, pp. 99–124, 1949.
[28] H.-Y. Hsieh, Y.-R. Chen, H.-C. Wu, H. L. Chen, J. Ning, Y.-C. Huang, C.-M. Wu, and R.-
K. Lee, “Extract the degradation information in squeezed states with machine learning,”
Phys. Rev. Lett., vol. 128, p. 073604, Feb 2022.
[29] M. Fox, Quantum Optics: An Introduction. Oxford Master Series in Physics, OUP Oxford,
2006.
[30] H.-Y. Hsieh, J. Ning, Y.-R. Chen, H.-C. Wu, H. L. Chen, C.-M. Wu, and R.-K. Lee, “Direct parameter estimations from machine learning-enhanced quantum state tomography,”
Symmetry, vol. 14, no. 5, 2022.
[31] Y.-R. Chen, H.-Y. Hsieh, J. Ning, H.-C. Wu, H. L. Chen, Y.-L. Chuang, P. Yang, O. Steuernagel, C.-M. Wu, and R.-K. Lee, “Experimental reconstruction of wigner distribution currents in quantum phase space,” 2021.
[32] W. F. Braasch, O. D. Friedman, A. J. Rimberg, and M. P. Blencowe, “Wigner current for
open quantum systems,” Phys. Rev. A, vol. 100, p. 012124, Jul 2019.
[33] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY, USA: Springer,
2e ed., 2006.
[34] H. Ogawa, H. Ohdan, K. Miyata, M. Taguchi, K. Makino, H. Yonezawa, J.-i. Yoshikawa,
and A. Furusawa, “Real-time quadrature measurement of a single-photon wave packet
with continuous temporal-mode matching,” Phys. Rev. Lett., vol. 116, p. 233602, Jun
2016.
[35] O. Morin, V. D’Auria, C. Fabre, and J. Laurat, “High-fidelity single-photon source based
on a type ii optical parametric oscillator,” Opt. Lett., vol. 37, pp. 3738–3740, Sep 2012.
[36] C. Ferrie and R. Blume-Kohout, “Maximum likelihood quantum state tomography is inadmissible,” arXiv preprint arXiv:1808.01072, 2018.
[37] S. Ahmed, C. Sánchez Muñoz, F. Nori, and A. F. Kockum, “Quantum state tomography
with conditional generative adversarial networks,” Phys. Rev. Lett., vol. 127, p. 140502,
Sep 2021.
[38] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using
cycle-consistent adversarial networks,” 2017.