研究生: |
方彥傑 Yen-Chieh Fang |
---|---|
論文名稱: |
薄膜電感被動元件之製備與模擬分析 Fabrication and simulation of passive integrated devices (inductors) using thin film technology |
指導教授: |
廖建能 博士
Dr. Chien-Neng Liao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 品質因子 、電感值 、共振頻率 、電磁模擬 、薄膜電感 、底層金屬遮蔽 |
外文關鍵詞: | Q, L, fsr, Electromagnetic Simulation, Thin film inductor, Pattern Ground Shield |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著無線通訊與可攜式通訊產品朝著高頻化、體積小、功能強、高穩定性的趨勢持續發展,其零組件必須採積體電路化方式完成,當前國內主動元件的體積縮小能力遠超過被動元件,如要將兩者整合,被動元件的薄膜化製程將是未來急需發展的關鍵技術。
本實驗以微影及濕蝕刻方式製備薄膜電感結構,利用向量網路分析儀與Cascade共平面GSG探針量測電感的散射參數,另外再配合ADS與 SONNET軟體,分析、模擬、探討不同的電感尺寸與底層金屬遮蔽結構變化其品質因數Q 、電感值、共振頻率等高頻特性 。
由實驗結果得知,長方形電感之電感值雖比正方形電感大一個數量級,但從共振的觀點而言,長方形因佔據較大面積有較高的寄生電容,其可操作的頻率範圍不高。製作底層金屬遮蔽的方式試圖提升電感的品質因數,雖未能有效達到目的,但透過電磁軟體的模擬分析,可了解若要有效發揮底層金屬遮蔽的功用,必須配合適當的電感尺寸與製程條件,本實驗所製備之薄膜電感其高頻特性最佳為QMax=2.65、共振頻率fsr=14.82Ghz。
High operation frequency, miniaturization, functionality, and reliability are the trends of future wireless and portable communication productions. Circuit integration becomes essential for the development. The shrinking and integration capability of active devices greatly exceeds that of passive ones. If both the active and the passive devices are to be integrated together, the thin film process technology for passive devices will play a crucial role in future development.
In this study photolithography and wet etching techniques are utilized to fabricate thin film inductors. By using Vector Network Analyzer and Cascade coplanar probes, scattering parameters of the thin inductor were measured. With the help of ADS and SONNET simulation analysis, effect of geometry and ground shield pattern on the high frequency characteristics of the inductors, e.g. quality factor, inductance and self-resonance frequency were discussed.
According to our experimental results, the inductance of rectangular inductor was found to be higher than that of square inductor by one order of magnitude. Nevertheless, the rectangular inductors have a lower self-resonance frequency due to the larger surface area, and hence larger parasitic impedance. Using a patterned ground shield beneath the inductor was planned to enhance quality factor of the inductors. Although we are not able to achieve the goal, but electromagnetic simulation results indicated that only the inductors having appropriate optimization of geometry and process conditions can gain the advantage from pattern ground shield. The optimum performance of the thin film inductor fabricated was found to be QMax = 2.65 and fsr = 14.82 Ghz.
[1] P. R. Gray and R. G. Meyer,"Future directions in silicon IC's for RF personal communications," in Proc. IEEE 1995 Custom Integrated Circuits Con., May 1995, pp. 83-90.
[2] N. Camiller, J. Costa, D. Lovelace, and D. Ngo,"Silicon MOSFET's, the microwave device technology for the 90s," IEEE MTT-S Int. Microwave Symp. Dig., June 1993, pp. 545-548.
[3] F.W. Grover, Inductance Calculations, Princeton, New Jersey: Van Nostrand,1946. Reprinted by New York, New York: Dover Publications, 1962.
[4] H.M. Greenhouse, "Design of Planar Rectangular Microelectronic
Inductors, "IEEE Transactions On Parts, Hybrids, and Packaging, vol. PHP-10, No. 2,pp.101-109, June.1974.
[5] C. P. Yue, "On-Chip Spiral Inductors for Silicon-Based Radio-Frequency Integrated Circuits, " Technical Report No. ICL98-087, Department of Electrical Engineering, Stanford University, July 1998.
[6] J. N. Burghartz, M. Soyuer, and K. A. Jenkins,"Microwave Inductors and Capacitors in Standard Multilevel Interconnect Silicon Technology," IEEE Trans. Microwave Theory Tech., Vol. MTT-44, pp. 100-104, Jan. 1996.
[7] J. N. Burghartz, M. Soyuer, and K. A. Jenkins,"Integrated RF and microwave components in BiCMOS technology," IEEE Trans. Electron Devices, Vol. 43, pp. 1559-1570, Sept. 1996.
[8] M. Park, S. Lee, H. K. Yu, J. G. Koo, and K. S. Nam,"High Q CMOS-compatible microwave inductors using double-metal interconnection silicon technology," IEEE Microwave and Guided Wave Lett., Vol. 7, No. 2, pp. 45-47, Feb. 1997.
[9] C. H. Chen and M. J. Deen, "A general procedure for high-frequency noise parameter de-embedding of MOSFETs by taking the capacitive effects of metal interconnections into account, "2001 IEEE Int. “Conf. Microelectronic Test Structure Dig,pp.109-114,March 2001.
[10] C. H. Chen and M. J. Deen, "A general noise and S-parameter de-embedding procedure for on-wafer high-frequency noise measurements of MOSFETs, "IEEE Tran. Microwave Theory and Tech.,vol.MTT-49,no.5,pp. 1004-1005,May 2001.
[11] E. P. Vandarnme, D. M. M.-P. Schreurs,and C. V. Dinther, "Improved three-step de-embedding method to accurately account for the influence of pad parasitics in silicon on-wafer RF test structures, "IEEE Trans.Electron Devices,vol. ED-48,no. 4,pp. 737-742 April 2001.
[12] 陳良波博士、蘇嘉禕、林大中、曾博民、黃國威博士 奈米通訊。第六卷第三期 24_矽基電感等效電路模型參數之自動化萃取法。
[13] J. A. Power, S. C. Kelly, E. C. Griffith, and M. O,Neill, "An Investigation of On-Chip Spiral Inductors on a 0.6μm BiCMOS Technology for RF Applications, "Proc.IEEE 1999 Int. Conf. on Microelectronic Test Structures, Vol 12, March 1999.
[14] J. N. Burghartz, M. Soyuer, K. A. Jenkins, M. Kies, P. Dolan, K. Stein, J. Malinowski, and D. L. Harame, “RF components implemented in an analog SiGe bipolar technology,” in Proc. BCTM, 1996, pp. 138–141.
[15] J. N.Burghartz, "Progress in RF Inductors on Silicon-Understanding Substrate Losses, "IBM Research Division, T.J. Watson Research Center, P.O.BOX 218, Yorktown Heights, New York 10598,USA.