研究生: |
許財源 Tsai-Yuan Hsu |
---|---|
論文名稱: |
在個體無差異之單向質數環上代號指定 Identity Assignment on Uniform Unidirectional Rings of Primal Size |
指導教授: |
黃興燦
Shing-Tsaan Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 23 |
中文關鍵詞: | 代號指定 、自我穩定 、同步執行模式 、個體無差異之單向環 |
外文關鍵詞: | identity assignment, self-stabilization, synchronous execution model, uniform unidirectional ring |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個在個體無差異 (uniform) 之單向 (Unidirectional) 質數環 (Primal Ring) 上代號指定 (Identity Assignment) 之自我穩定演算法 (Self-stabilizing Algorithm)。
代號指定在分散式系統 (Distributed System) 是很基本的問題,它可使系統上的行程 (processors) 建立完全的順序關係 (total order)。
此篇所提的演算法只用了6n的空間,在複雜度 (Complexity) 上用了 O(n**4) 決定論的時間和常數的期望時間。
Dijkstra在1974年提出了「自我穩定」 (Self-stabilization) 一詞。所謂「自我穩定」即,不論起初的狀態 (Initial Configuration) 為何,它可以在有限步驟使系統達到合法狀態 (Legitimate Configuration),如無短暫的錯誤 (Transient Fault),則系統一直在合法狀態。
代號指定 (Identity Assignment) 的問題,為使系統的行程 (Processors) 都有一個唯一的代號,此篇論文用自我穩定的方法作代號指定,這裡的系統為個體無差異 (Uniform) 之單向(Unidirectional) 質數環(Primal ring),即每個行程執行相同的演算法且只能看左側行程的狀態 (State)。
此篇演算法 (Algorithm) 為法則 (Rule) 的集合。每個法則有兩部份 :條件部份 (Condition Part) 動作部份 (Action Part)。條件部份為自己和左側鄰居的狀態的布林函數(Boolean Function),如行程的條件部份為真則此有特權 (Privilege)。此演算法作用在同步模式下 (Synchronous Execution model),首先每個行程檢查條件部份,然後每個有特權的行程執行動作部份。
This paper proposes a silent self-stabilization identity assignment algorithm for uniform unidirectional rings of primal size. The algorithm works on synchronous execution model. Each processor has a unique identity when the ring stabilizes. The algorithm maintains 6n states in each processor, where n is the size of the ring. The number of steps that the system takes to stabilize is O(D+E), where D is a deterministic time whose value equals O(n**4 ) and E is an expected time whose value equals O(1).
[BP89] J.B. Burns and J. Pachl, Uniform self-stabilizing rings, ACM Trans. Programming Languages Systems 11 (1989) 330-344.
[D74] E.W. Dijstra, Self-stabilizing systems in the spite of distributed control, Comm. ACM 17 (1974) 643-644.
[H90] T. Herman, Probabilistic self-stabilization, Inform. Process. Lett. 35 (1990) 63-67.
[H93] S.T. Huang, Leader election in uniform rings, ACM Trans. Programming Languages Systems, 15 (1993) 563-573.
[HL98] S.T. Huang and T.J. Liu, Four-state stabilizing phase clock for unidirectional rings of odd size. Inform. Process. Lett. 65 (1998) 325-329,
[IR81] A. Itai and M. Rodeh, Symmetry breaking in distributed networks, in: Proc. 22nd Ann. Symp. On Foundations of Computer Science (1981) 150-158.
[LP90] R.J. Lipton and A. Park, The Processor Identity Problem, Inform. Process. Lett. 36 (1990) 91-94.
[T90] S.H. Teng, Space efficient Processor Identity Protocol, Inform. Process. Lett. 34 (1990) 147-154.
[WH94] L.C. Wuu. and S.T. Huang, Identity assignment in uniform synchronous rings, Inform. Process. Lett. 49 (1994) 257-262.