簡易檢索 / 詳目顯示

研究生: 陳淑怡
Chen, Su-Yi
論文名稱: 在行動隨意網路中擁有中繼節點共享與高效率控制訊息之頻寬滿足群播樹
Relay-Sharing Bandwidth-Contented Multicast Trees with Efficient Control Messages in MANETs
指導教授: 許健平
Sheu, Jang Ping
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 38
中文關鍵詞: 行動隨意網路頻寬滿足群體廣播服務品質
外文關鍵詞: Mobile ad hoc networks, bandwidth contented, multicast, quality-of-service
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在行動隨機網路(mobile ad hoc networks, MANETs)的範疇中,以往的群播機制(quality-of-service, QoS)主要是利用建立滿足頻寬要求路徑的方式,以達成保證連線的服務品質。文獻指出,群播機制若是只考慮one-hop的鄰居資訊,則會因為隱匿終端機所產生的訊號干擾,而造成頻寬無法滿足要求。群播機制的問題主要有隱藏路線問題與隱藏群播路由問題。隱藏路由問題是當有新的頻寬要求被允許時,新的資料流與two-hop的鄰居資料流會相互干擾,造成兩者共同鄰居的頻寬無法滿足要求;隱藏群播路由問題是當有多個距離相近的資料流的頻寬要求被允許時,造成相互訊號干擾而無法同時滿足所有頻寬需求。為了同時解決上述兩個頻寬違反要求的問題,目前已有文獻提出群播樹機制(Multicast)。群播樹機制主要是一個來源端傳送資料給多個目的地端。但是在建置群播樹時,廣播過多的控制封包,容易造成節點消耗過多不必要的資源,使得頻寬出現浪費。因此,本研究提出同時以two-hop鄰居資訊之表格與較少量的訊息交換以粗估頻寬需求,並以共用的概念選擇能夠集結較多資料流的中繼節點作為群播樹的成員。研究結果顯示,經由NS-2的模擬,本研究提出的演算法能夠維持群播樹良好的完整度與封包輸出量,同時兼顧節省大量的控制訊號數量與能量消耗。


    Previous quality-of-service (QoS) multicasting/routing algorithms in mobile ad hoc networks (MANETs) resolved bandwidth-contented routes for QoS applications. However, without considering the two-hop neighborhood, they suffer two bandwidth-violation problems, namely, the hidden route problem (HRP) and the hidden multicast route problem (HMRP). HRP may occur when a new flow is allowed and the unaware bandwidth requirement of nodes in the two-hop neighborhood has existed. HMRP may occur when bandwidth requirements of multiple new adjacent flows are allowed currently. Although the bandwidth-satisfied multicast tree in MANETs to solve both two bandwidth violation problems has been proposed, it floods quantities of control messages to collect information of all nodes for establishing a multicast tree. Therefore, we propose a novel algorithm to construct a multicast tree based both on the information in two-hop neighborhood tables to roughly estimate the bandwidth requirement with fewer control messages, and on a relay-sharing concept to choose a relay covering as many flows as possible. The proposed algorithm avoids two bandwidth violation problems and reduces the quantity of control messages. The NS-2 simulation results show that our algorithm not only obtains the high integrity of multicast trees and the high throughput, but also significantly reduces the amount of control messages and the power consumption.

    摘要 i Abstract ii Chapter 1 Introduction 1 Chapter 2 Related Works 4 Chapter 3 Relay-Sharing Bandwidth-Contented Multicasting Algorithm 8 3.1 Collection of Two-Hop Neighborhood Information 9 3.2 Selection of Relays 12 3.3 Bandwidth Requirement Estimation 16 3.4 Maintenance of Multicast Trees 18 Chapter 4 Simulation Results 20 4.1 Performance Comparison: Receiving ratio 21 4.2 Performance Comparison: Different Number of Nodes 23 4.3 Performance Comparison: Different Number of Destinations 25 4.4 Performance Comparison: Different Number of Multicast Groups 27 4.5 Performance Comparison: Different Number of Destinations 29 4.6 Performance Comparison: Different Network size 31 4.7 Performance Comparison: Mobile Hosts 33 Chapter 5 Conclusion 35 References 36

    [1] C. Bettstetter, G. Resta, and P. Santi, “The Node Distribution of the Random Waypoint Mobility for Wireless Ad Hoc,” IEEE Transactions on Mobile Computing, vol. 2, no. 3, pp. 257-269, July-September 2003.
    [2] L. Chen and W. B. Heinzelman, “QoS-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks,” IEEE Journal Selected Areas in Communications, vol. 23, no. 3, pp. 561-572, March 2005.
    [3] S. Chen and K. Nahrstedt, “Distributed Quality-of-Service Routing in Ad Hoc Networks,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 8, pp. 1488-1505, August 1999.
    [4] I. I. ER ,W. K.G. Seah, “Distributed Steiner-Like Multicast Path Setup for Mesh-based Multicast Routing in Ad Hoc Networks,” Proceedings of IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing Workshops, vol. 2, pp.192-197, June 2006.
    [5] J. Gomez, A. T. Campbell, M. Naghshineh, and C. Bisdikian, “Conserving Transmission Power in Wireless Ad Hoc Networks,” Proceedings of the Ninth IEEE International Conference on Network Protocols, pp.24-34, November 2001.
    [6] S. Guo and O. Yang, “Maximizing Multicast Communication Lifetime in Wireless Mobile Ad Hoc Networks,” IEEE Transactions on Vehicular Technology, vol. 57, no.4, pp.2414-2425, July 2008.
    [7] C.-C. Hu, E. H.-K. Wu, and G.-H. Chen, “Bandwidth-Satisfied Multicast Trees in MANETs,” IEEE Transactions on Mobile Computing, vol. 7, no.6, pp. 712-723, June 2008.
    [8] L. Ji and M. S. Corson, “A lightweight Adaptive Multicast Algorithm,” Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), vol. 2, pp. 1036-1042, November 1998.
    [9] J. Li, D. Cordes, and J. Zhang, “Power-Aware Routing Protocols in Ad Hoc Wireless Networks,” IEEE Wireless Communications, vol. 12, no. 6, pp.69-81, December 2005.
    [10] L. Junhai, Y. Danxia, X. Liu, and F. Mingyu, “A Survey of Multicast Routing Protocols for Mobile Ad-Hoc Networks,” IEEE Communications Surveys & Tutorials, vol. 11, no. 1, pp. 78-91, First Quarter 2009.
    [11] E. Pagani and G. P. Rossi, “A Framework for the Admission Control of QoS Multicast Traffic in Mobile Ad Hoc Networks,” Proceedings of the Forth ACM International Workshop on Wireless Mobile Multimedia, Session I, pp. 2-11, 2001.
    [12] P. Sinha, R. Sivakumar, and V. Bhanghavan, “MCEDAR: Multicast Core-Extraction Distributed Ad Hoc Routing,” Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), vol. 3, pp. 1313-1317, September 1999.
    [13] R. Sivakumar, P. Sinha, and V. Bharghavan, “CEDAR: A Core-Extraction Distributed Ad Hoc Routing Algorithm,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 8, pp. 1454-1465, August 1999.
    [14] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang, “Distributed Topology Control for Power Efficient Operation in Multihop Wireless Ad Hoc Networks,” Proceedings of IEEE Conference on Computer Communications (INFOCOM), vol. 3, pp. 1388-1397, April 2001.
    [15] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, “On the Construction of Energy-Efficient Broadcast and Multicast Trees in Wireless Networks,” Proceedings of IEEE Conference on Computer Communications (INFOCOM), vol. 2, pp. 586-594, March 2000.
    [16] Y. Xu, J. Heidemann, and D. Estrin, “Adaptive Energy Conserving Routing for Multihop Ad Hoc Networks,” USC/Information Sciences Institute, Research Report 527, October 2000.
    [17] Q. Xue and A. Ganz, “Ad Hoc QoS On-demand Routing (AQOR) in Mobile Ad Hoc Networks,” Journal of Parallel and Distributed Computing, vol. 63, no. 2, pp. 154-165, February 2003.
    [18] Y. Yang and R. Kravets, “Contention-Aware Admission Control for Ad Hoc Networks,” IEEE Transactions on Mobile Computing, vol. 4, no. 4, pp. 363-377, July/August 2005.
    [19] Network Simulator (Version2), http://www-mash.cs.berkeley.edu/ns/, 2009.
    [20] H. Badis, “A QoS-aware multicast routing protocol for multimedia applications in mobile ad hoc networks,” Proceedings of the international symposium on Modeling, analysis and simulation of wireless and mobile systems (MSWiM), pp. 244-251, October 2008
    [21] Z. Niu, W. Yao, Q. Ni, and Y. Song “DeReQ: a QoS routing algorithm for multimedia communications in vehicular ad hoc networks,” Proceedings of the international conference on Wireless communications and mobile computing (IWCMC), pp. 393 -398, August 2007

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE