簡易檢索 / 詳目顯示

研究生: 佘書漢
She, Shu-Han
論文名稱: 生醫載體用之氧化石墨烯的設計與製備
Design and Preparation of Graphene Oxides for Bio-Carrier
指導教授: 馬振基
Ma, Chen-Chi M.
口試委員: 江金龍
陳景祥
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 186
中文關鍵詞: 石墨烯生物分佈自由基生醫載體
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在製備全新多功能之生醫載體,用於克服傳統生醫載體承載藥物效率過低的問題,本研究選擇一新穎的奈米碳材-奈米石墨烯作為基本載體,因奈米石墨烯具有高表面積、高親水性以及輕量化等優點,也具備高修飾性、高吸藥率以及智慧型放藥等特性,使奈米石墨烯能具有極大的潛力成為下世代生醫載體材料。
    i. 將奈米石墨烯應用於自由基之捕捉:
    1. 將石墨氧化脫層為氧化石墨烯以增加其水相分散性,接著以長時間超音波震盪的方法使其碎裂成為奈米等級尺寸,最後接枝上水性高分子Poly acrylic acid(PAA),以利材料進入血液中後具有更佳的穩定性及生物相容性。
    2. 為了探討PAA-g-GOs的自由基捕捉能力,將PAA-g-GOs打入會釋放自由基的腫瘤細胞(GL261),透過觀察PAA-g-GOs可以捕捉DCFH-DA所發出的螢光,可以證明PAA-g-GOs確實具有自由基捕捉的能力。
    3. 最後將PAA-g-GOs與腫瘤細胞(GL261)做體外培養,以及將PAA-g-GOs直接打入腫瘤鼠的腫瘤上,因PAA-g-GOs能夠捕捉腫瘤細胞所釋放出的自由基,結果顯示可以有效的殺死腫瘤細胞及抑制腫瘤的成長。
    ii. 將奈米石墨烯應用於生物分佈:
    1. 將石墨氧化脫層為氧化石墨烯以增加其水相分散性,利用超音波細胞粉碎機去震碎氧化石墨烯,並透過離心及過濾的方式將氧化石墨烯分成三種平面的尺寸,分別為1000nm以上、400~1000nm以及200nm以下,最後接枝上水性高分子Polyethylene glycol (PEG)以增加其懸浮性與生物相容性。
    2. 將GO、PEG-g-GOs與嗜中性白血球進行毒性與發炎反應測試,發現GO、PEG-g-GOs皆不會明顯對嗜中性白血球造成傷害,但GO會使嗜中性白血球相互聚集與黏附,並具有濃度相關性的刺激細胞內自由基的產生,但PEG-g-GOs卻沒有這樣的問題,代表PEG-g-GOs可以有效的避過嗜中性白血球的吞噬,更證明了PEG-g-GOs的高生物相容性與穩定性。
    3. 將PEG-g-GOs吸附上放射性元素Tc-99m,並利用小動物單光子發射電腦斷層掃描系統(Nanospect/CT)與放射顯像法(Autoradiography)去追蹤PEG-g-GOs於生物體內的分佈,可得知不同尺寸的PEG-g-GOs於生物體器官內的分佈有很明顯的差異,並且在接枝上水性高分子後,材料於生物體內的分散性與穩定性皆有明顯的提升。PEG-g-GOs (<200 nm)分佈的器官以脾臟為主;PEG-g-GOs (400-1000 nm)分佈的器官以肝臟為主;PEG-g-GOs (>1000 nm)分佈的器官則以肺臟為主。了解各尺寸材料於器官的分佈情形後,除了可以利用尺寸控制去進行被動標靶(Passive targeting)的治療外,也可藉由分佈情形去了解何種尺寸的材料循環能力最佳,提供了製備成為主動標靶(Active targeting)生醫載體材料之未來性,更重要的一點是透過長時間的觀察,PEG-g-GOs會隨著時間漸漸代謝出體外,並不會有殘留於體內的疑慮,所以透過本研究可以更加確立了石墨烯在生醫載體領域上的應用性。


    The first object of this work is the preparation of novel multi-functional bio-carrier. To improve the low drug loading efficiency of traditional bio-carrier, this study used a rising star in carbon-based nanomaterials, graphene. Among these Graphene-based nanomaterials, graphene oxide (GO) has been proposed as the most promising bio-carriers due to its ultrahigh specific surface area and extraordinary chemical capability.
    i. The application of superoxide scavenging by using graphene-based material
    1. To increase dispersibility of bio-carrier in water, this study used modified Hummers method to prepare graphene oxide (GO) graphite powder. The graphene oxide was further modified by grafting poly acrylic acid(PAA) to increase its stability and biocompatibility in physiological solutions.
    2. PAA-g-GOs was incubated with GL261 tumor cells. PAA-g-GOs would scavenge the fluorescent by using DCFH-DA method that confirmed the superoxide scavenge ability of PAA-g-GOs.
    3. By in vitro and in vivo experiment, the growth of tumor cells would be inhibited due to the superoxide scavenging ability of PAA-g-GOs. These results indicated that PAA-g-GOs is a promising candidate for novel multi-functional bio-carrier of clinical tumor treatment.
    ii. The application of biodistribution by using graphene-based material
    1. The effects of various dimensions of GO on the organ distribution have been investigated in this work. The GO with three different dimensions can be fabricated by ultrasonication, centrifugation, and filtration method. The stability and biocompatibility of GO in physiological solutions were increased by grafting PEG on GO surface.
    2. PEG-g-GOs was incubated with neutrophil cells to investigate its toxicity and inflammation. It was found that both GO and PEG-g-GOs will not apparently cause damage to neutrophil. However, GO will cause the mutually aggregation of neutrophil and dose-dependent stimulation inducing the induction of the free radicles while PEG-g-GOs will not, this represents that PEG-g-GOs can effectively avoid phagocytosis by neutrophil, moreover, it verifies the high biocompatibility and stability of PEG-g-GOs.
    3. The radioactivity element Tc-99m was absorbed on PEG-g-GOs to form 99mTc-PEG-g-GOs that was tracked by Nanospect/CT and Autoradiography method to observe the biodistribution in vivo. The results of Nanospect/CT and Autoradiography showed that the dimension of GO is a major factor to control the biodistribution. PEG-g-GOs (<200nm) were mainly accumulated in spleen; PEG-g-GOs (400-1000nm) were mainly accumulated in liver; PEG-g-GOs (>1000nm) were mainly accumulated in lung. We can do the passive targeting as the treatment by the distribution of bio-carrier. Moreover, we are capable of discovering which material is the best in cycle ability and provide a probability of active targeting bio-carrier in the future. The most important thing is that in the long-term biodistribution result suggests the gradual clearance of PEG-g-GOs from mice. It means PEG-g-GOs would not residual in vivo for long time. Nevertheless, our results are highly encouraging and pave the way for future graphene based in vivo biomedical research.

    目 錄 摘要……………………………………………………………………….I Abstract………………………………………………………………...IV 誌謝………………………………………………………………...…VIII 目錄 X 圖目錄 XIII 表目錄 XXI 第一章 緒論 1 第二章 基礎理論與文獻回顧 4 2-1 奈米藥物載體 4 2-1-1 前言 4 2-1-2 高分子藥物載體 7 2-1-3 藥物傳釋系統Drug Delivery System (DDS) [1] 14 2-2 自由基(Free radical) [9-14] 18 2-2-1 前言 18 2-2-2 自由基主要來源 18 2-2-3 自由基對人體造成的影響 20 2-3 奈米材料 20 2-4 石墨烯(Graphene) 24 2-4-1 單層石墨烯 24 2-4-2 奈米石墨烯片 26 2-4-3 Graphene製備方法 26 2-4-3-1 利用膠帶撕下法[22] 28 2-4-3-2 熱、化學脫層分散法[23, 24] 30 2-4-4 石墨烯的特性[26] 31 2-5 奈米石墨烯於藥物載體上之應用 35 2-5-1 奈米藥物標靶載體之機制[31, 32] 35 2-5-2 奈米石墨烯應用於藥物載體之優點 37 2-5-3 奈米石墨烯應用在生醫載體需解決之難題 38 2-6 奈米碳管及奈米氧化石墨烯-Biodistribution及藥物載體之文獻回顧 39 第三章 研究目的與內容 86 3-1 研究目的 86 3-2 研究內容 88 3-2-1 將石墨烯應用於自由基捕捉 88 3-2-2 將石墨烯應用於生物分佈(biodistribution) 92 第四章 實驗方法 100 4-1 實驗藥品 100 4-2 實驗設備 105 4-3 實驗流程圖 109 4-3-1 石墨烯應用於自由基捕捉實驗步驟 110 4-3-2 石墨烯應用於體內分佈流程圖 114 第五章 結果與討論 121 5-1 將PAA-g-GOs應用於自由基捕捉 121 5-1-1 PAA-g-GOs characterization 121 5-1-2 利用DCFH-DA assay定性確立自由基捕捉機制 127 5-1-3 將PAA-g-GOs與腦瘤細胞GL261進行體外試驗 128 5-1-4 PAA-g-GO與腫瘤鼠進行體內試驗 133 5-1-5 石墨烯應用於自由基捕捉之結論 137 5-2 將PEG-g-GOs應用於Biodistribution 139 5-2-1 GOs and PEG-g-GOs characterization 139 5-2-2 GOs, GO-COOHs, PEG-g-GOs對於嗜中性白血球之毒性、發炎反應探討 157 5-2-3 99mTc-PEG-g-GOs之TLC分析結果 168 5-2-4 Biodistribution of 99mTc-PEG-g-GOs 171 5-2-5 石墨烯應用於Biodistribution之結論 177 第六章 總結論 184

    1. 楊士億, 國立清華大學化學工程學系碩士論文. 馬振基教授指導, 2009.
    2. 李仕明, 國立清華大學化學工程學系碩士論文. 馬振基教授指導, 2010.
    3. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
    4. 王鴻傑, 國立清華大學化學工程學系碩士論文. 薛敬和教授指導, 2004.
    5. 林書毅, 國立台灣大學醫學院藥學所碩士論文. 高純琇教授指導, 2002.
    6. Langer, R.S., et al., Polymeric systems for controlled drug release. Chemical Reviews, 1999. 99(11): p. 3181-3198.
    7. Domb, A.J., A. Shikanov, and N. Kumar, Biodegradable polymers: An update. Israel Journal of Chemistry, 2005. 45(4): p. 393-399.
    8. Choi, S.K. and D. Kim, Drug-releasing behavior of MPEG/PLA block copolymer micelles and solid particles controlled by component block length. Journal of Applied Polymer Science, 2002. 83(2): p. 435-445.
    9. Ghosh, S., Recent research and development in synthetic polymer-based drug delivery systems. Journal of Chemical Research-S, 2004(4): p. 241-246.
    10. Domb A. J., K.J., Wiseman D. M. , Handbook of biodegradable polymers, Amsterdam. Harwood Academic Publishers, 1997.
    11. Sodergard, A.S., M., Properties of lactic acid based polymers and their correlation with composition. Progress in Polymer Science, 2002. 27(6): p. 1123-1163.
    12. 台灣自由基學會, http://web.my8d.net/sfrr/speak1.htm.
    13. 黃英烈醫師, http://www.ihclinic.com/freeunit.html. 英惠家庭醫學診所,自然醫學檢測治療中心.
    14. Halliwell, B., Reactive Oxygen Species and the Central-Nervous-System. Journal of Neurochemistry, 1992. 59(5): p. 1609-1623.
    15. Mapp, P.I., M.C. Grootveld, and D.R. Blake, Hypoxia, oxidative stress and rheumatoid arthritis. British Medical Bulletin, 1995. 51(2): p. 419-436.
    16. Dhalla, N.S., R.M. Temsah, and T. Netticadan, Role of oxidative stress in cardiovascular diseases. Journal of Hypertension, 2000. 18(6): p. 655-673.
    17. Huang, P., H. Pelicano, and D. Carney, ROS stress in cancer cells and therapeutic implications. Drug Resistance Updates, 2004. 7(2): p. 97-110.
    18. 馬振基主編, 「奈米材料科技原理與應用」. 全華科技圖書股份有限公司,台北, 2003.
    19. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
    20. 吳至彧, 國立清華大學工程與系統科學系碩士論文. 2009.
    21. Wang, Y., et al., Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 2011. 29(5): p. 205-212.
    22. Zhamu, A., NGPs -- an emerging class of nanomaterials. Reinforced Plastics, 2008. 52(10): p. 30-31.
    23. Materials, A., Angstron Introduces Low Cost Graphene Platelets. Nano werk, 2008.
    24. Li, J.H., D.C. Chen, D., and L.H. Tang, Graphene-based materials in electrochemistry. Chemical Society Reviews, 2010. 39(8): p. 3157-3180.
    25. Hone, J., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-388.
    26. 劉家銘, 奈米科技網(http://nano.nchc.org.tw/main.php).
    27. Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nano, 2008. 3(9): p. 538-542.
    28. http://only-perception.blogspot.com/2008/07/stm.html.
    29. Crommie, M., A Phonon Floodgate in Monolayer Carbon: The first STM spectroscopy of graphene flakes yields new surprises. Lawrence Berkeley National Laboratory, 2008.
    30. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200.
    31. Morozov, S.V., et al., Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters, 2008. 100(1).
    32. http://www.reade.com/resources/manufacturers-list/5249.
    33. Wright, L.R., J.B. Rothbard, and P.A. Wender, Guanidinium Rich Peptide Transporters and Drug Delivery. Current Protein and Peptide Science, 2003. 4(2): p. 105-124.
    34. Langel, U., Ed., CRC Press: Boca Raton, Fla. Cell-Penetrating Peptides: Processes and Applications, 2002.
    35. Zhang, Y.J., et al., In Vivo Pharmacokinetics, Long-Term Biodistribution, and Toxicology of PEGylated Graphene in Mice. Acs Nano, 2011. 5(1): p. 516-522.
    36. Dai, H.J., et al., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society, 2008. 130(33): p. 10876-+.
    37. Dai, H.J., et al., Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. Acs Nano, 2007. 1(1): p. 50-56.
    38. Shiba, K., et al., Biodistribution and Ultrastructural Localization of Single-Walled Carbon Nanohorns Determined In Vivo with Embedded Gd(2)O(3) Labels. Acs Nano, 2009. 3(6): p. 1399-1406.
    39. Liu, Z.A., et al., Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy. Nano Letters, 2010. 10(9): p. 3318-3323.
    40. Cheng, S.H., et al., Poly(ethylene glycol)-conjugated multi-walled carbon nanotubes as an efficient drug carrier for overcoming multidrug resistance. Toxicology and Applied Pharmacology, 2011. 250(2): p. 184-193.
    41. Liu, Z.A., et al., Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials, 2011. 32(1): p. 144-151.
    42. Li, W.X., et al., Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon, 2011. 49(3): p. 986-995.
    43. Zhang, S., et al., In vitro and in vivo behaviors of dextran functionalized graphene. Carbon, 2011. 49(12): p. 4040-4049.
    44. Hong, H., et al., In vivo targeting and positron emission tomography imaging of tumor vasculature with 66Ga-labeled nano-graphene. Biomaterials, 2012. 33(16): p. 4147-4156.
    45. Yang, K., et al., The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012. 33(7): p. 2206-2214.
    46. Bendas, G., Biodrugs, 2001. 15: p. 215-224.
    47. S. V. Vinogradov, T.K.B., and A. V. Kabanov, AdV. Drug DeliVery ReV, 2002. 54: p. 135-147.
    48. L. R. Wright, J.B.R.W., P. A. Curr, Protein Peptide Sci, 2003. 4: p. 105-124.
    49. Yang, X.Y., et al., High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. Journal of Physical Chemistry C, 2008. 112(45): p. 17554-17558.
    50. Kabanov, A.V., et al., Neuronal uptake and intracellular superoxide scavenging of a fullerene (C(60))-poly(2-oxazoline)s nanoformulation. Biomaterials, 2011. 32(14): p. 3654-3665.
    51. 蔣丙煌, 行政院國家科學委員會專題研究計畫 期中進度報告http://ntur.lib.ntu.edu.tw/bitstream/246246/78122/1/952221E002082.pdf. 國立臺灣大學食品科技研究所 2008.
    52. 162.129.247.245/MichelleLab/penglab/Protocol/MTT%20ASSAY2.doc.
    53. 洪啟仁副研究員, http://w3.nhri.org.tw/cellbank/b/97QA.pdf. 新竹食品工業發展研究所.
    54. Fiorito, S., et al., Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon, 2006. 44(6): p. 1100-1105.
    55. Lam, C.W., et al., A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Critical Reviews in Toxicology, 2006. 36(3): p. 189-217.
    56. Li, Z., et al., Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environmental Health Perspectives, 2007. 115(3): p. 377-382.
    57. Murray, A.R., et al., Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology, 2009. 257(3): p. 161-171.
    58. Porter, A.E., et al., Uptake of C-60 by human monocyte macrophages, its localization and implications for toxicity: Studied by high resolution electron microscopy and electron tomography. Acta Biomaterialia, 2006. 2(4): p. 409-419.
    59. Song, Y., X. Li, and X. Du, Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. European Respiratory Journal, 2009. 34(3): p. 559-567.
    60. http://www2.thu.edu.tw/~chemeng/ccdownload/csho/95(2)/Lecture%2012(SEM).pdf.
    61. Wikipedia, http://en.wikipedia.org/wiki/Enhanced_permeability_and_retention_effect.
    62. 徐善慧, 奈米生醫材料. 中興大學化工系 組織工程與幹細胞研究中心.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE