研究生: |
馮啟倫 Chi-Lun Feng |
---|---|
論文名稱: |
Project 1:RCN1與XRCC3在抗藥性子宮癌細胞所扮演的角色 Project 2:SCaMC-1在具轉移能力的口腔癌細胞株所扮演的角色 Project 1:Roles of RCN1 and XRCC3 in Doxorubicin-Resistant Uterine Project 2:Role of SCaMC-1 in metastatic oral cancer cell line |
指導教授: |
周秀專
Hsiu-Chuan Chou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 艾黴素 、抗藥性 、子宮肉瘤癌 、口腔癌 、癌症轉移 |
外文關鍵詞: | RCN1, XRCC3 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Project 1中文摘要
根據我國2013年國人兩性十大癌症死因死亡率的統計資料中可以看到子宮頸及部位未明示子宮癌相關的癌症在女性的統計資料中位居第七位,說明其對女性健康的威脅,是值得我們關注的議題。
而目前治療子宮肉瘤癌(uterine sarcoma)的方式有,手術移除有發生癌病變的區域;以及對患部進行放射線治療;和對病人投與化療藥物進行治療;或是進行賀爾蒙治療。而近年來癌症治療中已被受討論的是化療藥物所產生的抗藥性問題。而在治療子宮肉瘤癌中,最常使用的藥物為艾黴素(doxorubicin),雖然已有很多報導指出部分與抗藥性相關的生物機制,但其不能完全的說明產生抗藥性的原因,因此對艾黴素有抗藥性的子宮肉瘤癌的機制仍是值得被探討的。
由實驗室以前的研究知道在具抗藥性的子宮肉瘤癌細胞株(MES-SA/DxR-8μM)中發現RCN1和XRCC3這兩個蛋白的表現量與不具抗藥性的子宮肉瘤癌細胞株(MES-SA)相比其蛋白表現量分別相差了2.06倍以及2.13倍。有趣的是,實驗進行中在具抗藥性的子宮肉瘤癌細胞株的序列發現了RCN1_T5G與XRCC3_T241C這兩個點突變(point mutation),於是我將這兩個點突變進行reverse point mutation,並將實驗所得到的四個表現質體(RCN1, RCN1_T5G, XRCC3, XRC3_T241C)分別轉染於不具抗藥性的子宮肉瘤癌細胞來探討其對癌細胞抗藥性的影響。實驗結果發現,過度表現XRCC3_T241C質體的細胞其對艾黴素的抗藥性有顯著的增加,且會降低細胞的凋亡比例;這說明了XRCC3 Thr241Met的突變與抗藥性的子宮肉瘤癌有顯著的相關。而RCN1的部分因為質體轉染入不具抗藥性的子宮肉瘤癌細胞後,其蛋白的表現量並未增加,因此會持續的進行細胞篩選,以篩選出有表現差異的細胞。希望這個研究的結果未來能夠提供給子宮肉瘤癌抗藥性相關的研究一個有用的參考。
Project 2中文摘要
根據衛生福利部統計的國人十大死因中惡性腫瘤32年來一直蟬連榜首,其中口腔癌的死亡率是位居台灣2013年的十大癌症死因死亡率統計資料第五位,而且口腔癌好發於男性,男女性別比大約介於3:1至2:1[4]。和所有的癌症一樣,口腔癌的高死亡率和口腔癌細胞的侵襲、轉移能力息息相關。可惜的是,統計資料指出,超過六成以上的口腔癌患者在就醫時,其癌細胞就已經發生區域性或遠端的轉移,而其病例的五年存活率與未發生轉移的口腔癌患者相比,明顯地大幅下降了50%[32]。因此癌症的可怕之處除了在於癌細胞會不受控制的增生外,更危險的是癌細胞所產生的轉移問題。由過去的文獻指出在成纖維細胞以及骨肉瘤癌細胞中,其基因表現分析中發現SCaMC-1蛋白有過度表現[33]。而本研究希望利用核糖核酸干擾(RNA interference, RNAi)的技術藉由siSCaMC-1後以體外Transwell侵襲能力測試(Transwell invasion ability assay)觀察細胞的侵襲能力,以體外傷口癒合實驗(Wound healing migration assay)來觀察細胞的移動能力,以及細胞存活率測試(MTT cell viability assay)、細胞週期測試(Cell Cycle assay)來觀測細胞的存活能力,來觀察干擾SCaMC-1蛋白表現是否會使得具轉移能力的口腔癌細胞OC3-I5其細胞侵襲、轉移、存活能力下降,以限制癌細胞轉移能力並達到降低惡性腫瘤的死亡率。本研究也進一步利用西方點墨法(Western blot)探討SCaMC-1蛋白對上皮細胞間質轉化(Epithelial-mesenchymal transition, EMT)過程的影響。由實驗結果發現siSCaMC-1後,上皮細胞間質轉化因子Snail、Twist、SIP1蛋白表現量減少,進而升高E-cadherin蛋白的表現量,減少Vimentin、MMP3,以及MMP7蛋白的表現量,導致細胞的侵襲移動能力下降、減少走向上皮細胞間質轉化,進一步也會降低細胞的存活率。因此我們推論在口腔癌細胞中過度表現的SCaMC-1蛋白很有可能有助於癌細胞走向上皮細胞間質轉化。希望藉此研究了解SCaMC-1發展為口腔癌的診斷和治療新標靶蛋白的潛力。
Project 1 Abstract
According to Taiwan's Ministry of Health and Welfare Statistics of top ten cancer causes of death in 2013, the cervix and uterine related cancers is the seventh leading cause for females. Therefore, the risk of the cervix and uterine related cancers to women’s health is an issue worthy of our attention. Current treatments of uterine sarcoma manner are surgery, radiation therapy, chemotherapy, and hormone therapy. In recent studies of chemotherapy, the causes and burden of drug resistance have been in-depth discussed. In the treatment of uterine sarcoma, the most commonly used drug is doxorubicin. Although the biological mechanisms associated with doxorubicin resistance has been widely reported, the precise mechanism of resistance remains unclear. Therefore, doxorubicin resistance forming mechanisms still deserves to be explored. Previous studies have known that RCN1 and XRCC3 protein expression in MES-SA/DxR-8μM cells are higher 2.06 times and 2.13 times than MES-SA cells, respectively. Unexpectedly, RCN1_T5G and XRCC3_T241C point mutations were found in MES-SA/DxR-8μM cells that we decide to reverse the mutation sites back. Therefore, the purpose of the study is to transfect four different overexpression plasmids (RCN1, RCN1_T5G, XRCC3, XRCC3_T241C) in MES-SA cells to investigate the role of mutation sites in drug resistance by means of cells proliferation and cell apoptosis. My experimental results showed that resistant ability of MES-SAXRCC3_T241C cell to doxorubicin has significantly increased, and cell apoptosis mediated has decreased. This result explains that XRCC3 Thr241Met polymorphism significant association with doxorubicin-resistance in uterine sarcoma. However, the RCN1_T5G and RCN1 plasmids are still underway to be transfected into MES-SA cells. I will continue to optimize G418 concentration to select cells that can stably express transfected DNA. I wish that this study can provide a useful reference to doxorubicin resistance in future.
Project 2 Abstract
According to Taiwan's Ministry of Health and Welfare Statistics in 2013, oral cancer is the fifth leading cause of death in cancer. The incidence rates of oral cancer in males are 2~3 times higher than in females. Since approximately nine in ten of cancer deaths are attributable to cancer metastasis, cancer metastasis is a main cause of failure treatment. When patients present with oral cancer, over 60% of them have spreaded cancer cells in regional lymph nodes or distant organs at their first medical care. The five-year survival rates of these patients compared with cancer cells confined to primary site (localized) decrease as high as 50%. Recently, the comprehensive gene expression analysis showed that SCaMC-1 overexpression is a general feature of transformed cancer cells. In this study, we used a pair of oral squamous cell carcinoma lines, OC3, and invasive OC3-I5 as a model system to examine invasive mechanism and to identify whether SCaMC-1 protein is a therapeutic target. We used RNA interference technique to monitor the influence of SCaMC-1 protein in cell proliferation, migration and invasion ability. Our results show that siSCaMC-1 can reduce invasive OC3-I5 cells cell proliferation, migration and invasion. We also used western blotting to examine SCaMC-1 protein’s role in Epithelial-mesenchymal transition (EMT) pathway. The experimental results showed that after siSCaMC-1, reducing epithelial-mesenchymal transition factor Snail, Twist, SIP1, and further, increasing E-cadherin, reducing Vimentin, MMP3, MMP7 protein expression, leading to decreased cell motility, EMT and cell survival. Therefore, we infer in oral cancer cells, SCaMC-1 overexpression may likely to contribute to epithelial-mesenchymal transition (EMT). Taken together, our preliminary results demonstrate that SCaMC-1 protein is a useful diagnostic marker and therapeutic target for reducing oral cancer metastasis.
1. Institute, N.C. Uterine Sarcoma Treatment. 2013/12/02; Available from: http://www.cancer.gov/types/uterine/patient/uterine-sarcoma-treatment-pdq.
2. 羅逸雯, Project 1 : 利用氧化還原的蛋白質體學方式分析具有艾黴素抗藥性的子宮肌瘤癌中巰基活性的改變;Project 2 : 藉由蛋白質體學分析粒線體在含有艾黴素抗藥性的人類子宮肌瘤癌細胞中的蛋白質表現, in 應用科學系碩士班. 2013, 國立新竹教育大學: 新竹市. p. 141.
3. Society, A.C. Cancer Facts & Figures 2015. 2015; Available from: http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2015/.
4. Welfare, M.o.H.a. Analysis of the main causes of death in Taiwan, 2013. 2014/06/25; Available from: http://www.mohw.gov.tw/cht/Ministry/DM2_P.aspx?f_list_no=7&fod_list_no=4558&doc_no=45347.
5. Cancer, A.J.C.o. AJCC Cancer Staging Manual. 2010; Available from: https://cancerstaging.org/Pages/default.aspx.
6. Society, A.C. How is uterine sarcoma staged? 2015/03/18; Available from: http://www.cancer.org/cancer/uterinesarcoma/detailedguide/uterine-sarcoma-staging.
7. Weiss, R.B., The anthracyclines: will we ever find a better doxorubicin? Semin Oncol, 1992. 19(6): p. 670-86.
8. Tan, C., et al., Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer, 1967. 20(3): p. 333-53.
9. Arcamone, F., et al., Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng, 1969. 11(6): p. 1101-10.
10. Di Marco, A., M. Gaetani, and B. Scarpinato, Adriamycin (NSC-123,127): a new antibiotic with antitumor activity. Cancer Chemother Rep, 1969. 53(1): p. 33-7.
11. Fornari, F.A., et al., Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol, 1994. 45(4): p. 649-56.
12. Momparler, R.L., et al., Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res, 1976. 36(8): p. 2891-5.
13. Tachikui, H., A.F. Navet, and M. Ozawa, Identification of the Ca(2+)-binding domains in reticulocalbin, an endoplasmic reticulum resident Ca(2+)-binding protein with multiple EF-hand motifs. J Biochem, 1997. 121(1): p. 145-9.
14. GeneCards. Reticulocalbin 1, EF-Hand Calcium Binding Domain. 2014/05/07; Available from: http://www.genecards.org/cgi-bin/carddisp.pl?gene=RCN1.
15. Kuramitsu, Y., et al., Identification of up- and down-regulated proteins in gemcitabine-resistant pancreatic cancer cells using two-dimensional gel electrophoresis and mass spectrometry. Anticancer Res, 2010. 30(9): p. 3367-72.
16. Giribaldi, G., et al., Proteomic identification of Reticulocalbin 1 as potential tumor marker in renal cell carcinoma. J Proteomics, 2013. 91: p. 385-92.
17. Chang, J.F., et al., Nuclear proteomics with XRCC3 knockdown to reveal the development of doxorubicin-resistant uterine cancer. Toxicol Sci, 2014. 139(2): p. 396-406.
18. Tebbs, R.S., et al., Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene. Proc Natl Acad Sci U S A, 1995. 92(14): p. 6354-8.
19. GeneCards. X-Ray Repair Complementing Defective Repair In Chinese Hamster Cells 3. 2014/05/07; Available from: http://www.genecards.org/cgi-bin/carddisp.pl?gene=XRCC3.
20. Xu, Z.Y., et al., Xrcc3 induces cisplatin resistance by stimulation of Rad51-related recombinational repair, S-phase checkpoint activation, and reduced apoptosis. J Pharmacol Exp Ther, 2005. 314(2): p. 495-505.
21. Martinez-Marignac, V.L., et al., The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells. PLoS One, 2011. 6(1): p. e16394.
22. 小小整理網站. 突變(mutation). Available from: http://smallcollation.blogspot.tw/2013/08/mutation.html#gsc.tab=0.
23. Cheng, N.-Y. 突變(Mutation). 2014; Available from: http://www.chsh.chc.edu.tw/ezfiles/0/1000/img/101/99-3-11-5.pdf.
24. Pearson Education, I. The Types of Point Mutations and Their Effects. 2006; Available from: http://academic.pgcc.edu/~kroberts/Lecture/Chapter%207/mutation.html.
25. May, E.W., et al., Identification of up- and down-regulated proteins in doxorubicin-resistant uterine cancer cells: reticulocalbin-1 plays a key role in the development of doxorubicin-associated resistance. Pharmacol Res, 2014. 90: p. 1-17.
26. 林思婷, 以蛋白質體學分析艾黴素所誘發心臟毒殺及抗藥性相關之治療標的, in 生物資訊與結構生物研究所. 2015, 國立清華大學: 新竹市. p. 229.
27. Qin, L.Y., et al., Association between the XRCC3 Thr241Met polymorphism and cervical cancer risk: a meta-analysis. Asian Pac J Cancer Prev, 2014. 14(11): p. 6703-7.
28. Font, A., et al., Cisplatin plus weekly CPT-11/docetaxel in advanced esophagogastric cancer: a phase I study with pharmacogenetic assessment of XPD, XRCC3 and UGT1A1 polymorphisms. Cancer Chemother Pharmacol, 2008. 62(6): p. 1075-83.
29. Shen, X.Y., et al., XRCC3 Thr241Met polymorphism and clinical outcomes of NSCLC patients receiving platinum-based chemotherapy: a systematic review and meta-analysis. PLoS One, 2013. 8(8): p. e69553.
30. Du, L., et al., The Thr241Met polymorphism in the XRCC3 gene is associated with increased risk of cancer in Chinese mainland populations. Tumour Biol, 2014. 35(2): p. 1371-6.
31. Chen, X., et al., Association of XRCC3 and XPD751 SNP with efficacy of platinum-based chemotherapy in advanced NSCLC patients. Clin Transl Oncol, 2012. 14(3): p. 207-13.
32. Institute, N.C. SEER Stat Fact Sheets: Oral Cavity and Pharynx Cancer. 2012; Available from: http://seer.cancer.gov/statfacts/html/oralcav.html.
33. Traba, J., et al., SCaMC-1 promotes cancer cell survival by desensitizing mitochondrial permeability transition via ATP/ADP-mediated matrix Ca(2+) buffering. Cell Death Differ, 2012. 19(4): p. 650-60.
34. Health Promotion Administration, M.o.H.a.W. Introduction of oral cancer. 2013; Available from: http://www.hpa.gov.tw/BHPNet/Web/HealthTopic/TopicArticle.aspx?No=201312310002&parentid=200712250032.
35. Chen, Y.K., et al., Primary oral squamous cell carcinoma: an analysis of 703 cases in southern Taiwan. Oral Oncol, 1999. 35(2): p. 173-9.
36. 羅靜璿, 藉由蛋白質體學分析口腔癌中轉移相關機制及生物標記, in 生物資訊與結構生物研究所. 2014, 國立清華大學: 新竹市. p. 163.
37. Fidler, I.J., The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer, 2003. 3(6): p. 453-8.
38. foundation, T.c.o.r. 癌症為什麼會產生局部侵犯及轉移?. Available from: http://www.tmn.idv.tw/tcfund/magazine/maz29/m11.htm.
39. Larsen, M., M.L. Tremblay, and K.M. Yamada, Phosphatases in cell-matrix adhesion and migration. Nat Rev Mol Cell Biol, 2003. 4(9): p. 700-11.
40. Zvaifler, N.J., Relevance of the stroma and epithelial-mesenchymal transition (EMT) for the rheumatic diseases. Arthritis Res Ther, 2006. 8(3): p. 210.
41. 陳一村. 核醣核酸干擾術及其應用. 2012; Available from: http://www.idealversion.com/biomedicine/index.php.
42. del Arco, A. and J. Satrustegui, Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. J Biol Chem, 2004. 279(23): p. 24701-13.
43. Fiermonte, G., et al., Identification of the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J Biol Chem, 2004. 279(29): p. 30722-30.
44. Chou, H.C. and H.L. Chan, Targeting proteomics to investigate metastasis-associated mitochondrial proteins. J Bioenerg Biomembr, 2012. 44(6): p. 629-34.
45. Wu, W.S., The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev, 2006. 25(4): p. 695-705.
46. Pelicano, H., et al., Glycolysis inhibition for anticancer treatment. Oncogene, 2006. 25(34): p. 4633-46.
47. Wadhwa, R., et al., Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp Cell Res, 2002. 274(2): p. 246-53.
48. Wadhwa, R., et al., Mortalin-MPD (mevalonate pyrophosphate decarboxylase) interactions and their role in control of cellular proliferation. Biochem Biophys Res Commun, 2003. 302(4): p. 735-42.
49. Pouyssegur, J., F. Dayan, and N.M. Mazure, Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 2006. 441(7092): p. 437-43.
50. Esteban, M.A., et al., Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res, 2006. 66(7): p. 3567-75.
51. Chi, S.L., et al., Angiostatin-like activity of a monoclonal antibody to the catalytic subunit of F1F0 ATP synthase. Cancer Res, 2007. 67(10): p. 4716-24.
52. Kumar, B., et al., Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res, 2008. 68(6): p. 1777-85.
53. Mendes, O., H.T. Kim, and G. Stoica, Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis, 2005. 22(3): p. 237-46.
54. Juncker-Jensen, A., et al., Spontaneous metastasis in matrix metalloproteinase 3-deficient mice. Mol Carcinog, 2009. 48(7): p. 618-25.
55. Chen, S.H., et al., Mesothelin binding to CA125/MUC16 promotes pancreatic cancer cell motility and invasion via MMP-7 activation. Sci Rep, 2013. 3: p. 1870.
56. Xie, G., et al., Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells. Am J Physiol Gastrointest Liver Physiol, 2009. 296(4): p. G755-63.
57. Chen, L., et al., DKK1 promotes hepatocellular carcinoma cell migration and invasion through beta-catenin/MMP7 signaling pathway. Mol Cancer, 2013. 12: p. 157.
58. Hoque, M., et al., Annexins - scaffolds modulating PKC localization and signaling. Cell Signal, 2014. 26(6): p. 1213-25.