簡易檢索 / 詳目顯示

研究生: 黃韋翰
Huang, Wei-Han
論文名稱: 基於真空系統之微型生物反應器於在線測量二氧化碳產量之研究
Development of a vacuum-based system for on-line measurement of carbon dioxide production in mini-bioreactor
指導教授: 楊雅棠
Yang, Ya-Tang
口試委員: 黃介辰
Huang, Chieh-Chen
張晃猷
Chang, Hwan-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 45
中文關鍵詞: 生物反應器資料無線傳輸大腸桿菌二氧化碳濃度偵測乾燥重量
外文關鍵詞: bioreactor, data transmission, Escherichia coli, CO2 concentration detection, dry weight
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 呼吸作用作為細胞代謝產生能量的過程,有許多針對其代謝途徑及產物的研究。 本文介紹一系統透過生物反應器進行培養及排放的二氧化碳濃度偵測,以及將 OD600 換算出乾燥重量進行更進一步的分析。利用半導體製程中常用的真空系統進行不同碳源之大腸桿菌培養實驗,其能夠提供較佳的氣密性以供生物反應器進行氣體濃度量測, 並結合光密度測量 OD600、流體攪拌、二氧化碳氣體量測以及資料無線傳輸等功能。


    As respiration being a process of cellular metabolism for energy production, many studies have focused on its metabolic pathways and products. In this research, we first introduce a system performing bacteria culture and emitting CO2 detection using our bioreactor, then OD600 is converted to dry weight for further analysis. Escherichia coli was cultured with different carbon sources utilizing the vacuum system which is commonly used in semiconductor manufacturing processes .The vacuum system provides a better air tightness for our bioreactor to detect gas cancentration, which combined optical density(OD600) detection, fluid mixing, CO2 concentration detection and wireless transmission.

    誌謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VII 一、緒論 1 1-1研究動機 1 1-2文獻回顧 3 1-2-1生物反應器的建構 3 1-2-2二氧化碳的測定 4 1-2-3不同碳源的大腸桿菌培養 5 二、材料及方法 6 2-1製作大腸桿菌洋菜盤樣本 6 2-2藥品配製 7 2-3大腸桿菌乾燥重量測量 8 2-3-1 大腸桿菌預養 8 2-3-2 乾燥重量的量測 8 2-4生物反應器系統設置 10 2-4-1實驗硬體架設 10 2-4-2光密度偵測系統 12 2-4-3二氧化碳感測模組 14 2-4-4無線傳輸系統 15 2-4-5泵浦打氣系統 17 2-4-6 Arduino程式編譯 19 2-5校正系統電壓 20 三、實驗結果 22 3-1實驗前準備步驟 22 3-2實驗步驟 23 3-3培養結果 24 3-3-1大腸桿菌在不同碳源培養下的有氧生長情形 24 3-3-2大腸桿菌在不同葡萄糖濃度下的有氧生長 27 四、結論及討論 29 附錄 30 A-1 Arduino 程式碼 30 A-2 生物反應器設計圖 40 A-3 中英對照表 41 參考文獻 42

    [1] Jian Wang,Jiang feng Zhu,George N. Bennett, Ka-Yiu San , Succinate production from different carbon sources under anaerobic conditions by metabolic engineered Escherichia coli strains, Metabolic Engineering 13 (2011) 328–335.
    [2] J. Macy, H. Kulla, and G. Gottshohalk, H2 dependent anaerobic growth of Escherichia coli on L-Malate : succinate formation, J. Bacteriology, (1976) 423-428.
    [3] J. E. Gonzalez, C. P. Long, and M. R. Antoniewicz .Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis, Metabolic Engineering 39 (2017) 9–18.
    [4] Betts J, and Baganz F, Miniature bioreactors: current practices and future opportunities. Micro Cell Fact. 5, (2006) 21 doi:10.1186/1475-2859-5-21
    [5] C. N. Takahashi, A. W. Miller, F. Ekness, M. J. Dunham and E. Klavins A low cost, customizable turbidostat for use in synthetic circuit characterization. ACS Synth. Biol. 4, (2014) 32.
    [6] E. Toprak, A. Veres, J. B. Michel, R. Chait, D. L. Hartl, R. Kishony, Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nature Genetics. 44 (2012) , 101-106.
    [7] E. Toprak, A. Veres, S. Yildiz, J. M. Pedraza, R. Chait, J. Paulsson, and R. Kishony Building a morbidostat: an automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition. Nat. Protoc. 8 (2013) 555−567.
    [8] P. C. Liu, Y. T. Lee, C. Y Wang, and Y. T. Yang, Design and use of a low cost, automated morbidostat for adaptive evolution of bacteria under antibiotic drug selection. J. Vis. Exp. 1154, (2016) e54426.
    [9] H. K Wang and Y. T Yang, Mini photobioreactors for in vivo real-time characterization and evolutionary tuning of bacterial optogenetic circuit. ACS Synth. Biol. 6 (2017), 1793−1796 .
    [10]T. Pilizota and Y. T. Yang, Do it Yourself microbial cultivation techniques for synthetic and systems biology: cheap, fun and flexible. Front. Microbiol. 9 (2018), 1666.
    [11] Ding-Shun Lin,Chih-Hsien Lee,Ya-Tang Yang, Wireless bioreactor for anaerobic cultivation of bacteria, Biotechnol Prog.2020. DOI: 10.1002/btpr.3009 .
    [12] Micaela Benavides, Johan Mailier , Anne-Lise Hantson , Gerardo Muñoz , Alejandro Vargas , Jan Van Impe and Alain Vande Wouwer , Design and Test of a Low-Cost RGB Sensor for Online Measurement of Microalgae Concentration within a Photo-Bioreactor, Sensors 2015, 15, 4766-4780.
    [13] Charlotte Volpe, Olav Vadstein, Geir Andersenb and Tom Andersenc, Nanocosm: a well plate photobioreactor for environmental and biotechnological studies , Lab Chip( 2021) , 21, 2027-2039.
    [14] Jen-Yung Lin , Huan-Liang Tsai , and Wen-Chi Sang, Implementation and Performance Evaluation of Integrated Wireless MultiSensor Module for Aseptic Incubator of Cordyceps militaris, Sensors 20 (2020), 4272.
    [15] 劉承恩,<釀酒溫度與二氧化碳監控平台-以紅葡萄酒為例>,國立中興大學電機工程學系所碩士論文,2019。
    [16] Van Leeuwen M, Heijnen JJ, Gardeniers H, Van Der Wielen LAM, Van Gulik WM. Development of a system for the on-line measurement of carbon dioxide production in microbioreactors; application to aerobic batch cultivations of Candida utilis. Biotechnol Prog 25. (2009), 892– 897.
    [17] Michiel van Leeuwen,Erik E. Krommenhoek,Joseph J. Heijnen,Han Gardeniers,Luuk A. M. van der Wielen,Walter M. van Gulik ,Aerobic batch cultivation in micro bioreactor with integrated electrochemical sensor array. Biotechnol. Prog 26 (2010) , 293−300.
    [18] Madeline Tonga, Shawn Frencha, Sara S. El Zaheda, Wai kit Ongb, Peter D. Karpb, Eric D. Brown, Gene Dispensability in Escherichia coli Grown in Thirty Different Carbon Environments, mBio (2020), 11.
    [19] P. S. Swain., K. Stevenson., A. Leary., L. F. Montano-Gutierrez., I. B. N. Clark.,J. Vogel., & T. Pilizota, Inferring time-derivatives, including cell growth rates, using Gaussian processes. Nature Communications, 7 (2016), 13766.

    QR CODE