研究生: |
梁寶丹 |
---|---|
論文名稱: |
非線性兩點邊界值常微分方程解路徑之分歧與延拓 |
指導教授: | 簡國清博士 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 割線預測法 、牛頓迭代法 、虛擬弧長延拓法 、隱函數定理 、分歧點 、解分支 |
外文關鍵詞: | Secant-predicto, Newton’s interative method, pseudo-arclength continuation method, Implicit function theorem, Bifurcation point, Solution branches |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文中,首先,我們利用簡單特徵值的概念,用Crandall andRabinowitz定理找出數學模型之解路徑的可能分歧點;其次, 利用解分支方向、割線預測法、牛頓迭代法以及虛擬弧長延拓法等數值方法,配合隱函數定理對非線性彈性杵彎曲及兩點邊界值常微分方程,討論其解路徑之延拓與分歧。並針對兩個數學模型, 求得含有分歧點及轉彎點的解路徑與解分支圖, 有助我們進一步瞭解非線性分歧問題的定性變化。
Abstract
In this thesis, we use the bifurcation at a simple eigenvalue to compute the possible bifurcation points of two nonlinear two-point boundary valued ordinary differential equations, and then use the implicit function theorem, the direction of solution branches, secant predictor method, Newton’s iterative method, and pseudo–arclength continuation method to figure out the solution paths of the buckling of an elastic rod and the other model. We get solution branches of the models, and find a lot of bifurcation points and turning points which help us to understand the qualitative analysis in the nonlinear bifurcation problems
參考文獻
[1] Allgower,E.L. and Chien,C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7, pp.1265- 1281,(1986).
[2] Aselone,P.M. and Moore,R.H., An Extension of the Newton-
Kantorovich Method for Sloving Nonlinear Equations with An Application to Elasticity. J. Math. Anal. l3, pp.476-501,
(1966).
[3] Atkinson,K.E., The numerical solution of bifurcation problems, SIAM J. Numer. Anal., 14(4), pp.584-599,(1977).
[4] Bauer,L., Reiss,E.L., and Keller,H.B., Axisymmetric Bucking of Hollow Spheres and hemispheres, Comm. Pure Appl. Math., 23, pp. 529-568,(1970).
[5] Brezzi,F., Rappaz,J. and Raviart,P.A., Finite dimensional approxi-mation of a bifurcation problems, Numer. Math., 36, pp.1-25,(1980).
[6] Brown,K.J., Ibrahim,M.M.A. and Shivaji,R., S-Shaped bifurcation curves, Nonlinear Analysis, T.M.A, 5, pp.475-486,(1981).
[7] Castro,A. and Shivaji,R., Uniqueness of positive solution for a class of elliptic boundary value problems, Proc. R. Soc. Edinb. 98A, pp.267-269,(1984).
[8] Choi,Y.S., Jen,K,C.,(簡國清) and McKenna,P.J., The Structure of the Solution Set for Periodic Oscillations in a Suspension Bridge Model, IMA J. Appl. Math., 47, pp.283-306,(1991).
[9] Coron,J.M., Periodic Solutions of a Nonlinear Wave Equation without Asumptions of Monotonicity. Math. Ann., 262, pp.
273-285,(1983).
[10] Crandall,M.G. and Rabinowitz,P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340,(1971).
[11] Crandall,M.G. and Rabinowitz,P.H., Bifurcation, Perturbation of Simple Eigenvalues, and Linearized Stability, Archive for rational Mech. Analysis, 52, pp.161-180,(1973).
[12] Crandall,M.G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P.H. Rabinowitz, Academic Press, pp. 1-35,(1977).
[13] Crandall,M.G. and Rabinowitz,P.H., Mathematical Theory of Bifurcation,Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos,C. and Bessis,D., NATO Advanced Study Institute Series,(1979).
[14] Iooss,G and Joseph,D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg,(1989).
[15] Jepson,A.D. and Spence,A., Numerical Methods for Bifurcation Problems, State of the Art in Numeriacl Analysis, edit bu A. Iserles, MJD Powell,(1987).
[16] J.Glover, A.C.Lazer, and P.J.McKenna, Existence and Stability of Large Scale Nonlinear Oscillations in Suspension Bridges, Journal of Applied Mathematics and Physics Vol. 40,(1989).
[17] Jen,K.C.(簡國清), The Stability and Convergence of a Crank- Nicolson Scheme for a Nonlinear Beam Vibration Equation, Chinese Journal of Mathematics, Vol.23, No.2, pp.97-121,(1995).
[18] Rheinboldt,W.C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237,
(1980).
[19] Rheinboldt,W.C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley(New York).
[20] Keller,H.B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, (1987).
[21] Keller,H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited By Rabinowitz,P.H., Academic Press, pp.359-384,(1977).
[22] Wacker,H.(ed),Continuation Methods, Academic Press, New York, (1978).
[23] Küpper,T., Mittelmann,H.D. and Weber,H.(eds.), Numerical Methods for Bifurcation Problems, Birkhäuser, Basel,(1984).
[24] Kubiček,M. and Marek,M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, (1983).