研究生: |
李明勇 Lee, Ming-Yong |
---|---|
論文名稱: |
適用於40~6144區塊長度LTE-Advanced系統之512Mbps渦輪解碼器 512Mbps 40~6144-Size Turbo Decoder for LTE-Advanced System |
指導教授: |
黃元豪
Huang, Yuan-Hao |
口試委員: |
蔡佩芸
Tsai, Pei-Yun 翁詠祿 Ueng, Yeong-Luh |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 渦輪碼 、可變動區塊大小 、最大事後機率 、無記憶體衝突 、高傳輸速率 |
外文關鍵詞: | Turbo code, variable block size, MAP, contention-free, high throughput, LTE-Advanced |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在下一代無線通訊系統中,人們對於快速以及高品質資料傳輸的要求與日俱增,所以無線通訊應用需要更高速的通道編碼方式(Channel Coding Scheme)。而渦輪解碼器(Turbo code)為數位通訊系統裡最有名的通道編碼方式之一,其優點具有良好的錯誤更正能力(Outstanding Error Correct ability),但是因為解碼時需要迭代次數(Iteration loop),所以造成吞吐量(Throughput)下降。在本論文中,設計一個適用於前瞻性第三代合作夥伴計劃(3rd Generation Partnership Project, 3GPP-LTE-Advanced)規格可變動區塊大小的高速渦輪解碼器。首先,採用具有良好錯誤更正能力的最大事後機率演算法(Maximum A-Posteriori Algorithm, MAP)及採用平行區塊處理技術(Parallel Sub-block Processing)來提高平行度(High Parallelism),以達到高吞吐量(High Throughput)的目的。此外設計出指令式交互連接器(Instruction-based Interconnection Circuit)及唯讀記憶體(Read Only Memory)來達到對於不同區塊大小的支援性。同時針對於高平行度所面臨到的記憶體衝突(Memory conflict)問題,提出無衝突導向的記憶體重置演算法(Contention-Free Oriented Memory Remapping Algorithm) 來產生適當的指令組合以搭配交互連結器的運作。透過此無衝突導向的記憶體重置演算法,所設計出來的渦輪解碼器將可在任何平行度的情況下運行,而達到減少最大事後機率處理器(MAP processor)的個數。最後,將所設計的渦輪解碼器利用UMC 90nm COMS製程、Faraday Cell Library與Faraday Memory Compiler方式實現,其合成(Synthesis)結果所設計的渦輪解碼器將在4次迭代的環境下最佳吞吐量可達到516Mb/s,其能量效能為0.2nJ/bit/iter。
The next complete evolution in wireless communications, the fourth-generation (4G), becomes more competitive and intensive. The services of wireless communication applications demand for high data rate and high quality. Therefore, the communication applications in the future may demand for a higher speed channel coding scheme. The Turbo code is one of the most popular channel coding schemes for digital communication systems.
This thesis proposes a high–throughput variable-block-size Turbo decoder for 3GPPLTE-
Advanced system. This work increases the parallelism degree by the parallel subblock processing to achieve the high–throughput requirement. In addition, the proposed Turbo decoder supports 188 different block sizes in the range 40∼6144 for 3GPP-LTEAdvanced specification. Besides, the contention-free oriented memory remapping algorithm provides contention-free technique with any parallelism degree. Meanwhile, the compatibility with variable block size is also accomplished by the instruction-based interconnection circuit and pre-processed instruction ROM. Finally, the proposed variableblock-size Turbo decoder was implemented and the proposed design was synthesized with the 90nm UMC CMOS technology. The Turbo decoder has the throughput of 516Mb/s with 4 iteration loops, and energy efficiency is 0.2 nJ/bit/iter.
[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit errorcorrecting coding and decoding: Turbo-codes,” in Communications, 1993. ICC 93. Geneva. Technical Program, Conference Record, IEEE International Conference on, vol. 2, May 1993, pp. 1064–1070 vol.2.
[2] J. Hagenauer and P. Hoeher, “”A Viterbi algorithm ith soft-decision outputs and its applications”,”in Proc. IEEE GLOBECOM, Dallas, TX, pp. 47.1.1–47.1.7, 1989.
[3] F. J. L. R. Bahl, J. Cocke and J. Raviv, “”Optimal decoding of linear codes for minimizing symbol error rate”,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 284–
287, 1974.
[4] Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding, 3rd Generation Partnership Project (3GPP) TS 36.212, Rev. 10.0, 2011.
[5] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” Information Theory, IEEE Transactions on, vol. 20,
no. 2, pp. 284–287, Mar 1974.
[6] J. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol detectors
with parallel structure for ISI channels,” Communications, IEEE Transactions on, vol. 42, no. 234, pp. 1661–1671, Feb/Mar/Apr 1994.
[7] S.-J. Lee, N. Shanbhag, and A. Singer, “Area-efficient high-throughput MAP decoder architectures,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 13, no. 8, pp. 921–933, Aug. 2005.
[8] Z. Wang, “High-Speed Recursion Architectures for MAP-Based Turbo Decoders,”Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 15, no. 4,pp. 470–474, April 2007.
[9] A. Viterbi, “An intuitive justification and a simplified implementation of the MAP decoder for convolutional codes,” Selected Areas in Communications, IEEE Journal on, vol. 16, no. 2, pp. 260–264, Feb 1998.
[10] C. Y. Lin, “High Radix Turbo Decoder for 3GPP,” Master’s thesis, Department of Electrical Engineering, Nation Tsing Hua University, Hsinchu, Taiwan, 2009.
[11] Y.-C. Chang, “High-throughput variable-block-size turbo decoder for 3GPP-LTE,”Master’s thesis, Department of Electrical Engineering, Nation Tsing Hua University,
Hsinchu, Taiwan, 2010.
[12] P. F. Z. He and S. Roy, “Highly-parallel decoding architectures for convolutional turbo codes,” VLSI Systems, IEEE Transactions on, vol. 14, Oct 2006.
[13] J. Sun and O. Takeshita, “Interleavers for turbo codes using permutation polynomials over integer rings,” Information Theory, IEEE Transactions on, vol. 51, no. 1, pp. 101–119, Jan. 2005.
[14] L. Dinoi and S. Benedetto, “Variable-size interleaver design for parallel turbo decoder architectures,”Communications, IEEE Transactions on, vol. 53, no. 11, pp.
1833–1840, Nov. 2005.
[15] Y.-X. Zheng and Y. Su, “Iterative decoding algorithm and terminating criteria for inter-block permuted turbo codes,” in Personal, Indoor and Mobile Radio Com-
munications, 2004. PIMRC 2004. 15th IEEE International Symposium on, vol. 2, Sept. 2004, pp. 1116–1120 Vol.2.
[16] J. Ryu and O. Takeshita, “On quadratic inverses for quadratic permutation polynomials over integer rings,” Information Theory, IEEE Transactions on, vol. 52, no. 3, pp. 1254–1260, March 2006.
[17] N. R. L. Thul, M.J.; Wehn, “Enabling high-speed turbo-decoding through concurrent interleaving,” in Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on, 2002, pp. II–509–12 Vol.2.
[18] C. Shung, P. Siegel, G. Ungerboeck, and H. Thapar, “VLSI architectures for metric normalization in the Viterbi algorithm,” in Communications, 1990. ICC ’90, Including Supercomm Technical Sessions. SUPERCOMM/ICC ’90. Conference Record., IEEE International Conference on, Apr 1990, pp. 1723–1728 vol.4.
[19] Y. Zhang and K. Parhi, “Parallel turbo decoding,” in Circuits and Systems, 2004. ISCAS ’04. Proceedings of the 2004 International Symposium on, vol. 2, May 2004, pp. II–509–12 Vol.2.
[20] (2009) SMIMS Technology Corp. [Online]. Available: http://www.smims.com/
[21] C.-C. Wong, Y.-Y. Lee, and H.-C. Chang, “A 188-size 2.1mm2 reconfigurable turbo decoder chip with parallel architecture for 3GPP LTE system,” in VLSI Circuits, 2009 Symposium on, June 2009, pp. 288–289.
[22] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24Mb/s radix-4 logMAP turbo decoder for 3GPP-HSDPA mobile wireless,” in Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International, 2003, pp. 150–484 vol.1.
[23] B. Bougard, A. Giulietti, V. Derudder, J.-W. Weijers, S. Dupont, L. Hollevoet, F. Catthoor, L. Van der Perre, H. DeMan, and R. Lauwereins,“A scalable 8.7nJ/bit 75.6Mb/s parallel concatenated convolutional (turbo-) CODEC,” in Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International, 2003, pp. 152–484 vol.1.
[24] G. Prescher, T. Gemmeke, and T. Noll, “A parameterizable low-power highthroughput turbo-decoder,” in Acoustics, Speech, and Signal Processing, 2005. Pro-
ceedings. (ICASSP ’05). IEEE International Conference on, vol. 5, March 2005, pp. v/25–v/28 Vol. 5.
[25] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “A 58mw 1.2mm2 HSDPA Turbo Decoder ASIC in 0.13μm CMOS,” in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, Feb. 2008, pp. 264–612.