研究生: |
陳致佑 Chih-Yu Chen |
---|---|
論文名稱: |
隨機過程下不完全市場一些金融商品的定價與避險 Pricing and Hedging in Incomplete Market under Stochastic Volatility |
指導教授: |
陳佳信
Chia-Hsin Chen 韓傳祥 Chuan-Hsiang Han |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 科技管理研究所 Institute of Technology Management |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 不完全市場 、定價 、避險策略 、最適q測度 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
波動率(volatility)在金融市場當中具有不可或缺的角色,它不但會影響到金融商品的評價,也會影響投資者的風險控管策略。Black和Schole定義股票價格變化為一隨機過程,以往業界衍生性金融商品的定價皆以此為基準。
然而,如此的定價卻會造成實際價格和定價之間的明顯差距。透過實證研究發現,實際上會存在「波動率微笑(volatility smile)」的情況,且波動率變化對買權價格的影響相當敏感,波動率為常數的假設明顯和事實不符。另外,在不完全市場的假設下,投資者對單一金融商品的價格看法會有所不同,選取的等價鞅測度(EMM,equivalently martingale measure)並不唯一,導致決定出的價格亦非唯一。
本篇論文首先探討在風險中立機率測度下,如何利用「最適q測度」機率測度轉換,決定出不同機率測度 下的定價模型,接著利用決定出的模型,計算歐式選擇權(European option)以及變異數交換(variance swap)的價格,並且討論在不同的機率測度下,對應到的最適避險策略。最後,利用程式模擬,比較不同機率測度下的歐式選擇權及變異數交換價格,以及各種避險策略下各自的避險效果優劣。
由最終的結果,我們可以觀察到歐式買權及變異數交換中的合理變異數值(fair variance),在不同的機率測度下確實有些許的不同,且當q值越小,得到的買權價格及合理變異數值也會越小。而在不同的機率測度下對應的避險策略,透過模擬比較,亦可發現其避險效果的確優delta避險。
[1] D. Bates (1996), “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options”, Review of Financial Studies, 9, page 69-107
[2] D. Bates (1998), “Pricing Option under Jump-Diffusion Process”, Finance department, The Wharton School University of Pennsylvania Philadelphia, PA 19104-6367, page 37-88
[3] D.Becherer (2003), “Rational Hedging and Valuation of Integrated Risks under Constant Absolute Risk Aversion”, Insurance: Mathematics and Economics, 33, page 1–28
[4] D.Becherer, (2004), “Utility-Indifference Hedging and Valuation via Reaction Diffusion Systems”, Proceedings of The Royal Society, Series A, 460, page 27–51.
[5] F. Biagini, P. Guasoni and M. Pratelli (2000), ”Mean-variance hedging for stochastic volatility models”, Mathematical Finance 10(2), page 109-123
[6] S. Borak, K. Detlefsen and W. Hardle (2005), “FFT-based Option Pricing”,Sonderforschungsbereich 649, Humboldt University, Berlin, Germany in its series SFB 649 Discussion Papers with number SFB649DP2005-011
[7] P. Carr and D. Madan (1998), “Option Valuation Using the Fourier Transform, Journal of Computational Finance, No.2, page 61-78
[8] P. Carr and D. Madan (1998), “Towards a Theory of Volatility Trading”, in Risk Book on Volatility, New York, page 417-427
[9] F. Delbaen, W. Schachermayer, (1994), A General Version of the Fundamental Theorem of Asset Pricing. Math. Annalen, Vol. 300, page 463–520.
[10] K. Demeterfi, E. Derman, M. Kamal and J. Zou (1999), “A Guide to Variance Swaps”, RISK 12(6), page 54-59
[11] D. Duffie, J. Pan, and K. Singleton (2000), “Transform Analysis and Asset Pricing for Affine Jump-Diffusions”, Econometrica, 68, page 1343-1376
[12] Y. El-Khatib, (2006), “Hedging Discontinuous Stochastic Volatility Models”, arXiv:math/0603527v1 [math.PR].
[13] H. Follmer, M. Schweizer (1990), “Hedging of contingent claims under incomplete information”, Gordon and Breach, London, page 389-414
[14] M. Frittelli, (2000), ”The Minimal Entropy Measure and the Valuation Problem in Incomplete Markets”, Math, Finance 10, page 39-52
[15] P. Grandits and L. Krawczyk (1998), “Closeness of some Spaces of Stochastic Integrals”, Seminaire de Probabilites, XXXII, Lecture Notes in Math., 1686, Springer, Berlin, page 73–85
[16] R. Grasselli and T. Hurd (2007), “Indifference pricing and hedging for volatility derivatives”, Applied Mathematical Finance, 14(4), page 303-317
[17] P. Guasoni and F. Biagini (2002), “Mean-variance hedging with random volatility jumps”, stochastic analysis and applications 20(3), page 471-494
[18] M. Harrison and S. Pliska (1981), “Martingales and Stochastic integrals in the theory of continuous trading”, Stoch. Proc. & Appl., Vol. 11, page. 215–260.
[19] V. Henderson, D. Hobson, S. Howison and T. Kluge, (2005), “A Comparison of q-optimal option prices in a Stochastic Volatility Model with correlation”, Review of Derivatives Research 8 page.5-25.
[20] S. Heston (1993), “A closed from solution for option with stochastic volatility with applications to bond and currency options”, The Review of Financial Studies 6(2), page 327-343
[21] D. Hobson (2004), “Stochastic Volatility models, Correlation, and the -Optimal Measure”, Mathematical Finance, 14, page 537-556
[22] J. Hull, A. White (1987), “The pricing of Options with Stochastic Volatility”, Journal of Finance, 42, page 281-300
[23] S. Lan (1997), "Pricing Stock Options in a Jump-Diffusion Model with Stochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods." Mathematical Finance, 7, page 413-426
[24] A. Lim (2005), “Mean-variance hedging when there are jumps”, SIAM Journal on Control and Optimization, pages 1893-1922
[25] R. Merton (1976), “Options Pricing when Underlying Returns are Discontinuous”, journal pf Financial Economics, 4, page 124-144
[26] P. Protter, (1990), Stochastic integration and differential equations. A new approach. Springer-Verlag, Berlin.
[27] F. Rouah, G. Vainberg (2007), “Option Pricing Models and Volatility Using Excel-VBA”, chapter 5, page 136-162
[28] D. Satyajit (2002), “The Surprise Element: Jumps in Interest Rates”, Journal of Econometrics, 106, page 27-65
[29] M. Schweizer (1999), “A minimality property of the minimal martingale measure”, Statistics and Probability Letters 42(1), page 27-31
[30] M. Schweizer (1996), “Approximation pricing and the variance-optimal martingale measure”, The Annals of Probability, 24(1), page 206-236