簡易檢索 / 詳目顯示

研究生: 林勲諺
Lin, Hsun-Yen
論文名稱: 二維過渡金屬化合物壓電催化之能源與環境應用研究
Energy and Environmental Applications of Piezoelectric Catalysis in Two-Dimensional Transition Metal Compounds
指導教授: 吳志明
Wu, Jyh-Ming
口試委員: 林宗宏
Lin, Zong-Hong
楊東翰
Yang, Tung-Han
韋光華
Wei, Kung-Hwa
洪緯璿
Hung, Wei-Hsuan
學位類別: 博士
Doctor
系所名稱: 工學院 - 前瞻功能材料產業博士學位學程
Ph.D. Program in Prospective Functional Materials Industry
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 136
中文關鍵詞: 壓電觸媒二硫化鉬汙水處理水解產氫
外文關鍵詞: Piezocatalysis, MoS2, Wastewater treatment, Hydrogen evolution
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業化的迅速發展,水資源及能源短缺已成為一個日益嚴峻的全球性問題,對人類生存和國際關係構成了巨大挑戰。能源供應取決於水,供水取決於能源,如何以兼具環保、無汙染的方式,建立高效率之汙水淨化流程,並將此淨水用作於乾淨能源的產出逐漸受到重視。本研究系統性地研究了二硫化鉬奈米花的壓電催化與物理吸附的偕同效應。二硫化鉬奈米花因其獨特的層狀結構和多元相組成,使其在奈米材料和催化領域中備受關注,並被廣泛應用於壓電電催化系統之中;然而因二硫化鉬奈米花具備多元相組成以及高的比表面積,使其對於有機汙染物具有壓電催化降解能力的同時亦具備極高的物理吸附能力,導致二硫化鉬奈米花對於汙水淨化之成效評估上的困難及誤判的產生。本文針對二硫化鉬奈米花結構,透過精準調控二硫化鉬之相組成比例,驗證具三角晶格結構的1T相二硫化鉬對有機染料羅丹明B表現出極高的物理吸附特性,此物理吸附現象可透過對溶液酸鹼值的調控而改變;對於具六角晶格結構的2H相二硫化鉬而言,在外加應力作用下能夠透過壓電催化機制,產生顯著的壓電電荷,進而促進催化反應的進行,同時,其高比表面積和表面靜電特性亦提供優異的吸附能力,使其能有效捕捉和固定反應物,進一步提高催化效率。本研究透過將二硫化鉬奈米花與碳布基材複合,透過以具高比表面積的碳布纖維作為基材,增加其表面積與活性位,在水流機械力作用之下,透過壓電效應生成高氧化性的活性氧物並有效分解有機汙染物分子,成功於五個降解循環內分解總量超過2.5公升之羅丹明B有機染料,且整個處理過程中不會有二次汙染物的排放或產出,驗證二硫化鉬碳布複合觸媒之淨零排放以及環境永續特性。在可再生能源領域,氫氣作為一種乾淨、高效的能源載體,受到廣泛的研究與重視,為了將汙水回收處理得到的淨水,經由壓電觸媒作用,實現持續性的氫氣產出,本研究將壓電相二硫化鉬與具高導電性之過渡金屬碳化物Mo2CTx結合,形成MoS2@Mo2CTx異質結構壓-光電觸媒,透過收穫超音波機械力與光能,此異質結構觸媒之產氫量可於8小時內達到9019.4 μmol・g-1,為單純壓電催化產氫量的1.62倍。為了使此異質結構觸媒更具實際應用上之實用性,本研究透過水流機械力作為驅動壓電觸媒之能量來源,在完全黑暗環境下,可於24小時內達到454.1 μmol・g-1的氫氣產出量,本研究亦利用有限元素法分析,模擬透過水流機械力作用下,各種水壩及河流、海洋潮汐等水力來源預期可得到之氫氣產出量,本研究利用二硫化鉬的壓電特性和Mo2CTx的高導電特性,透過異質結構之壓電催化特性,實現了在完全黑暗環境中,單純藉由水流作用力實現水分解產氫反應,對大規模氫氣生產提供了一種新穎且可行的方案,在全球尋求低碳排放、乾淨能源解決方案的背景下,具有重要的實際應用價值。


    With the rapid industrial development, the shortage of clean water and energy resources has become an increasingly severe global issue, posing significant challenges to human survival and international relations. The energy supply relies on water resources, and the water supply depends on energy as well. Consequently, the demand for environmentally friendly, pollution-free, and efficient wastewater purification processes has surged in recent years. The ultimate goal is to not only purify the wastewater but also repurpose it for clean energy production. With this aim, this research first investigates the synergistic effects of piezocatalysis and physical adsorption in molybdenum disulfide (MoS2) nanoflowers systematically. Due to their unique layered structure and multi-phase composition, MoS2 nanoflowers (NFs) have attracted considerable attention in research fields of nanomaterials and catalysis and are widely applied in piezoelectric catalysis systems. However, the multi-phase composition and high specific surface area of MoS2 NFs grant them not only piezocatalytic degradation capabilities for organic pollutants but also significant physical adsorption capacity. This dual functionality complicates the accurate assessment of their effectiveness in wastewater purification, leading to potential misjudgments. In this study, we focus on the lattice structures of MoS2 NFs and validate the high physical adsorption properties of the 1T phase MoS2 with a trigonal lattice structure toward the organic dye Rhodamine B (RhB). This physical adsorption phenomenon can be modulated by adjusting the pH environment of the solution. For the 2H phase MoS2 NFs, which possess a hexagonal lattice structure, significant piezoelectric charges can be generated under the applied external mechanical force through piezocatalysis, thereby promoting the catalytic reaction activities. Simultaneously, the high specific surface area and surface electrostatic properties provide excellent adsorption capabilities, effectively capturing the reactants, and further enhancing the catalytic efficiency. This study successfully combines the MoS2 NFs with carbon cloth substrates, utilizing carbon cloth fibers with a high specific surface area as the base material to increase the overall surface area and active sites. Under the influence of mechanical force from water flow, reactive oxygen species are produced through the piezocatalytic effect, effectively decomposing the organic pollutant molecules. In this work, over 2.5 liters of RhB dye is completely degraded within five consecutive cycles, without emitting any secondary pollutants throughout the process, demonstrating the net-zero emissions and environmental sustainability of the MoS2-carbon cloth composite catalyst. In the research field of renewable energy, hydrogen gas, as a clean and efficient energy carrier, has been widely recognized and studied. To achieve sustainable hydrogen production using purified water recovered from the wastewater treatment via piezocatalysis, this study combines the piezoelectric 2H phase MoS2 NFs with the highly conductive transition metal carbide Mo2CTx to form a MoS2@Mo2CTx heterostructure piezo-photocatalyst. By harvesting ultrasound mechanical force energy and solar energy, the hydrogen production of the heterostructure catalyst reaches 9019.4 μmol・g-1 within 8 hours, which is 1.62 times higher than that of piezocatalysis. To enhance the practical applicability of the composite catalyst, we utilize water flow as the energy source to drive the piezocatalyst, achieving a hydrogen production of 454.1 μmol・g-1 within 24 hours under a completely dark environment. Finite element method (FEM) is also applied to simulate and predict the potential hydrogen production abilities from various hydraulic sources such as dams, rivers, and ocean tides under the influence of water flow. This research offers a novel and feasible solution for large-scale hydrogen production, holding significant practical application value in the global pursuit of low-carbon emission and clean energy solutions.

    Contents 中文摘要................................................................................................................ I Abstract .............................................................................................................. III 致謝..................................................................................................................... VI Contents .......................................................................................................... XXI List of Figures ............................................................................................... XXVI Chapter 1 Introduction ........................................................................................ 1 1.1 Introduction ...................................................................................... 1 1.2 Motivation ......................................................................................... 5 Chapter 2 Literature Review .............................................................................. 8 2.1 Wastewater treatment ............................................................................ 8 2.2 Hydrogen evolution reaction ............................................................... 10 2.3 Photocatalysis ....................................................................................... 13 2.3.1 Working mechanism of photocatalysts ................................... 13 2.3.2 Photocatalytic materials and applications .............................. 14 2.3.3 Defect engineering ..................................................................... 16 2.3.4 Element doping engineering .................................................... 19 2.3.5 Heterostructure formation ....................................................... 22 2.4 Piezocatalysis ........................................................................................ 25 2.4.1 Working mechanism of piezocatalysts .................................... 26 2.4.2 Piezocatalytic materials and applications ............................... 28 2.4.3 Defect engineering ..................................................................... 33 XXII 2.4.4 Element doping engineering .................................................... 35 2.4.5 Heterostructure formation ....................................................... 38 2.5 Piezo-photocatalysis ............................................................................. 42 2.5.1 Working mechanism of piezo-photocatalysts ......................... 42 2.5.2 Piezo-photocatalysts dye degradation and H2 production of Quartz/MoS2 hierarchical heterostructure .............................................. 43 2.5.3 Piezo-photocatalysts H2 production of UiO-66-NH2(Zr/Hf) metal-organic frameworks ........................................................................ 45 2.5.4 Piezo-photocatalysts H2 production of Bi4NbO8X (X = Cl, Br) polar single crystals .................................................................................... 46 2.6 Mechanical force-triggered piezocatalytic systems ........................... 48 2.6.1 Mechanism and types of mechanical forces ............................ 48 2.6.2 Piezocatalytic H2 evolution under low-frequency vibration for ZnNG nanofoams ....................................................................................... 49 2.6.3 Self-powered seawater electrolysis of W-TENG triboelectric nanogenerator ............................................................................................ 50 2.6.4 Contact-electro-catalysis organic dye degradation at the FEP-water interface ............................................................................................ 51 Chapter 3 Experimental Method ...................................................................... 53 XXIII 3.1 Synthesis of materials .......................................................................... 53 3.2 Characterization and analysis ............................................................ 55 3.2.1 Scanning electron microscopy (SEM) ..................................... 55 3.2.2 X-ray diffractometer (XRD) .................................................... 56 3.2.3 Raman spectroscopy ................................................................. 57 3.2.4 Transmission electron microscopy (TEM) .............................. 58 3.2.5 X-ray photoelectron spectroscopy (XPS) ................................ 59 3.2.6 Fluorescence photoluminescence spectroscopy (FL) ............. 60 3.2.7 Electron paramagnetic resonance spectroscopy (EPR) ......... 61 3.2.8 Piezoresponse force microscopy (PFM) .................................. 62 3.2.9 Ultraviolet-visible spectroscopy (UV-vis) ................................ 62 3.2.10 Gas chromatography (GC) ..................................................... 63 3.2.11 Fourier-transform infrared spectroscopy (FTIR) ................ 64 3.3 Catalytic experiments .......................................................................... 65 3.3.1 Piezoelectric organic dye degradation, physical adsorption and desorption measurement ........................................................................... 65 3.3.2 Quantification of reactive oxygen species ............................... 66 3.3.3 Catalytic hydrogen evolution reactions ................................... 66 3.3.4 Catalytic formaldehyde detection through hydrogen evolution XXIV reactions ...................................................................................................... 67 3.4 Finite element method (FEM) simulations ........................................ 67 3.4.1 Piezovoltage output simulation for 1T MoS2 NFs and 2H MoS2 NFs ............................................................................................................... 67 3.4.2 Finite element method simulation of MoS2@Mo2CTx ........... 68 Chapter 4 Result and Discussion ...................................................................... 70 4.1 The piezo-degradation and physical adsorption duality of MoS2 NFs.............................................................................................................................. 70 4.1.1 Material characterization ......................................................... 70 4.1.2 Investigation of the piezocatalysis–adsorption duality of MoS2 NFs ............................................................................................................... 77 4.1.3 Finite element method (FEM) simulations of MoS2............... 83 4.1.4 Reaction mechanism and the long-term degradation tests of MoS2 NFs .................................................................................................... 84 4.2 The piezo-photocatalytic water splitting of MoS2@Mo2CTx heterostructure ................................................................................................... 88 4.2.1 Material characterization ......................................................... 88 4.2.2 Piezo-, photo-, and piezo-photocatalytic HER uutilizing ultrasonic force ........................................................................................... 95 XXV 4.2.3. Stimulated Water-flow-driven piezocatalytic HER ............ 102 4.2.4. FEM simulations .................................................................... 106 Chapter 5 Conclusion ...................................................................................... 111 Chapter 6 Future Prospect .............................................................................. 114 Chapter 7 Curriculum Vitae and Publication List ....................................... 117 Reference .......................................................................................................... 122

    1. Shannon, M., et al., 597 “Science and technology for water purification in the coming decades,”. Nanoscience and 400 technology: a collection of reviews from nature Journals, 2010: p. 337-346.
    2. Werber, J.R., C.O. Osuji, and M. Elimelech, Materials for next-generation desalination and water purification membranes. Nature Reviews Materials, 2016. 1(5): p. 1-15.
    3. Yaqoob, A.A., et al., Role of nanomaterials in the treatment of wastewater: A review. Water, 2020. 12(2): p. 495.
    4. Rathi, B.S., P.S. Kumar, and D.-V.N. Vo, Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Science of the Total Environment, 2021. 797: p. 149134.
    5. Salama, E.-S., et al., Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable and Sustainable Energy Reviews, 2017. 79: p. 1189-1211.
    6. Bhatia, D., et al., Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 2017. 47(19): p. 1836-1876.
    7. Tanudjaja, H.J., et al., Membrane-based separation for oily wastewater: A practical perspective. Water research, 2019. 156: p. 347-365.
    8. Kiezyk, P. and D. Mackay, Waste water treatment by solvent extraction. The Canadian Journal of Chemical Engineering, 1971. 49(6): p. 747-752.
    9. Chang, S.H., Utilization of green organic solvents in solvent extraction and liquid membrane for sustainable wastewater treatment and resource recovery—a review. Environmental Science and Pollution Research, 2020. 27(26): p. 32371-32388.
    10. Perrich, J.R., Activated carbon adsorption for wastewater treatment. 2018: CRC press.
    11. Chai, W.S., et al., A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 2021. 296: p. 126589.
    12. Mbamba, C.K., et al., A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite. Water research, 2015. 68: p. 342-353.
    13. Sena, M. and A. Hicks, Life cycle assessment review of struvite precipitation in wastewater treatment. Resources, Conservation and Recycling,
    123
    2018. 139: p. 194-204.
    14. Hedström, A., Ion exchange of ammonium in zeolites: a literature review. Journal of environmental engineering, 2001. 127(8): p. 673-681.
    15. Kansara, N., et al., Wastewater treatment by ion exchange method: a review of past and recent researches. ESAIJ (Environmental Science, An Indian Journal), 2016. 12(4): p. 143-150.
    16. Guida, S., et al., Demonstration of ion exchange technology for phosphorus removal and recovery from municipal wastewater. Chemical Engineering Journal, 2021. 420: p. 129913.
    17. Rubio, J., M. Souza, and R. Smith, Overview of flotation as a wastewater treatment technique. Minerals engineering, 2002. 15(3): p. 139-155.
    18. Badawi, A.K., et al., Advanced wastewater treatment process using algal photo-bioreactor associated with dissolved-air flotation system: A pilot-scale demonstration. Journal of Water Process Engineering, 2022. 46: p. 102565.
    19. Muniz, G.L., A.C. Borges, and T.C.F. da Silva, Performance of natural coagulants obtained from agro-industrial wastes in dairy wastewater treatment using dissolved air flotation. Journal of Water Process Engineering, 2020. 37: p. 101453.
    20. Najafinejad, M.S., et al., Application of electrochemical oxidation for water and wastewater treatment: an overview. Molecules, 2023. 28(10): p. 4208.
    21. Hand, S. and R.D. Cusick, Electrochemical disinfection in water and wastewater treatment: identifying impacts of water quality and operating conditions on performance. Environmental science & technology, 2021. 55(6): p. 3470-3482.
    22. Garcia-Rodriguez, O., et al., Electrochemical treatment of highly concentrated wastewater: A review of experimental and modeling approaches from lab-to full-scale. Critical Reviews in Environmental Science and Technology, 2022. 52(2): p. 240-309.
    23. Hube, S., et al., Direct membrane filtration for wastewater treatment and resource recovery: A review. Science of the total environment, 2020. 710: p. 136375.
    24. Xiang, H., et al., Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. Journal of Water Process Engineering, 2022. 49: p. 103023.
    25. Yu, C., et al., Marriage of membrane filtration and sulfate radical-advanced oxidation processes (SR-AOPs) for water purification: Current
    124
    developments, challenges and prospects. Chemical Engineering Journal, 2022. 433: p. 133802.
    26. Ganiyu, S.O., C.A. Martínez-Huitle, and M.A. Oturan, Electrochemical advanced oxidation processes for wastewater treatment: Advances in formation and detection of reactive species and mechanisms. Current Opinion in Electrochemistry, 2021. 27: p. 100678.
    27. Ghernaout, D. and N. Elboughdiri, Advanced oxidation processes for wastewater treatment: facts and future trends. Open Access Library Journal, 2020. 7(2): p. 1-15.
    28. Saravanan, A., et al., A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook. Chemosphere, 2022. 308: p. 136524.
    29. Wang, J. and S. Wang, Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chemical Engineering Journal, 2020. 401: p. 126158.
    30. Ma, D., et al., Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere, 2021. 275: p. 130104.
    31. Giannakis, S., K.-Y.A. Lin, and F. Ghanbari, A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chemical Engineering Journal, 2021. 406: p. 127083.
    32. Eniola, J.O., et al., A review on conventional and advanced hybrid technologies for pharmaceutical wastewater treatment. Journal of Cleaner Production, 2022. 356: p. 131826.
    33. Ighalo, J.O., et al., Cost of adsorbent preparation and usage in wastewater treatment: a review. Cleaner Chemical Engineering, 2022. 3: p. 100042.
    34. Mehrjouei, M., S. Müller, and D. Möller, A review on photocatalytic ozonation used for the treatment of water and wastewater. Chemical Engineering Journal, 2015. 263: p. 209-219.
    35. Al-Mamun, M.R., et al., Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 2019. 7(5): p. 103248.
    36. Li, J., et al., Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites. Journal of hazardous materials, 2020. 392: p. 122261.
    37. Wang, F., et al., Unprecedentedly efficient mineralization
    125
    performance of photocatalysis-self-Fenton system towards organic pollutants over oxygen-doped porous g-C3N4 nanosheets. Applied Catalysis B: Environmental, 2022. 312: p. 121438.
    38. Nidheesh, P.V., et al., Recent advances in electro-Fenton process and its emerging applications. Critical Reviews in Environmental Science and Technology, 2023. 53(8): p. 887-913.
    39. Deng, F., et al., Critical review on the mechanisms of Fe2+ regeneration in the electro-Fenton process: Fundamentals and boosting strategies. Chemical Reviews, 2023. 123(8): p. 4635-4662.
    40. Liu, J., et al., Piezocatalytic techniques in environmental remediation. Angewandte Chemie, 2023. 135(5): p. e202213927.
    41. Jeyabalan, S.S., et al., A systematic review of recent advances in piezocatalysis–Synergetic heterojunctions for organic pollutants removal, immobilization, and scope of machine learning techniques. Chemical Engineering Journal, 2024: p. 155086.
    42. Tu, S., et al., Piezocatalysis and piezo‐photocatalysis: catalysts classification and modification strategy, reaction mechanism, and practical application. Advanced Functional Materials, 2020. 30(48): p. 2005158.
    43. Zheng, H., et al., Recent advancements in the use of novel piezoelectric materials for piezocatalytic and piezo-photocatalytic applications. Applied Catalysis B: Environmental, 2023: p. 123335.
    44. Petroody, S.S.A., S.H. Hashemi, and C.A. van Gestel, Transport and accumulation of microplastics through wastewater treatment sludge processes. Chemosphere, 2021. 278: p. 130471.
    45. Waqas, S., et al., Recent progress in integrated fixed-film activated sludge process for wastewater treatment: A review. Journal of environmental management, 2020. 268: p. 110718.
    46. Gong, Y., et al., New strategy for enhancing the photocatalytic degradation of sulfadiazine by polymerized carbon nitride: Modulation of short-lived radicals to long-lifetime reactive species. Applied Catalysis B: Environment and Energy, 2024. 357: p. 124301.
    47. Jin, X., et al., A thorough observation of an ozonation catalyst under long-term practical operation: Deactivation mechanism and regeneration. Science of The Total Environment, 2022. 830: p. 154803.
    48. He, C., et al., Catalytic ozonation of bio-treated coking wastewater in continuous pilot-and full-scale system: Efficiency, catalyst deactivation and in-situ regeneration. Water Research, 2020. 183: p. 116090.
    126
    49. Wu, W., et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014. 514(7523): p. 470-474.
    50. Chen, Y., et al., Piezotronic graphene artificial sensory synapse. Advanced Functional Materials, 2019. 29(41): p. 1900959.
    51. Pan, L., et al., Advances in piezo‐phototronic effect enhanced photocatalysis and photoelectrocatalysis. Advanced Energy Materials, 2020. 10(15): p. 2000214.
    52. Pan, C., J. Zhai, and Z.L. Wang, Piezotronics and piezo-phototronics of third generation semiconductor nanowires. Chemical reviews, 2019. 119(15): p. 9303-9359.
    53. Wu, J.M., et al., Piezo-Catalytic Effect on the Enhancement of the Ultra-High Degradation Activity in the Dark by Single-and Few-Layers MoS2 Nanoflowers. Advanced Materials (Deerfield Beach, Fla.), 2016. 28(19): p. 3718-3725.
    54. Lin, E., et al., BaTiO3 nanocubes/cuboids with selectively deposited Ag nanoparticles: Efficient piezocatalytic degradation and mechanism. Applied Catalysis B: Environmental, 2021. 285: p. 119823.
    55. Wu, J.M., et al., Piezoelectricity induced water splitting and formation of hydroxyl radical from active edge sites of MoS2 nanoflowers. Nano Energy, 2018. 46: p. 372-382.
    56. Fuso Nerini, F., et al., Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat Energy 3: 10–15. 2018.
    57. Zhu, Q., et al., Emerging cocatalysts on g‐C3N4 for photocatalytic hydrogen evolution. Small, 2021. 17(40): p. 2101070.
    58. Bie, C., L. Wang, and J. Yu, Challenges for photocatalytic overall water splitting. Chem, 2022. 8(6): p. 1567-1574.
    59. Garcia-Navarro, J., M. Schulze, and K.A. Friedrich, Understanding the role of water flow and the porous transport layer on the performance of proton exchange membrane water electrolyzers. ACS Sustainable Chemistry & Engineering, 2018. 7(1): p. 1600-1610.
    60. Liu, F., et al., Rational design of better hydrogen evolution electrocatalysts for water splitting: a review. Advanced Science, 2022. 9(18): p. 2200307.
    61. Yang, F., et al., Ultrasound-assisted piezoelectric photocatalysis: An effective strategy for enhancing hydrogen evolution from water splitting. Nano Energy, 2023: p. 108993.
    62. Zhang, X., et al., Phonon and Raman scattering of two-dimensional
    127
    transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015. 44(9): p. 2757-2785.
    63. Sinha, A., et al., MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: A review. TrAC Trends in Analytical Chemistry, 2018. 102: p. 75-90.
    64. Chou, T.-M., et al., A highly efficient Au-MoS2 nanocatalyst for tunable piezocatalytic and photocatalytic water disinfection. Nano Energy, 2019. 57: p. 14-21.
    65. Zhang, X., et al., Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature, 2019. 566(7744): p. 368-372.
    66. Chen, S. and Y. Pan, Noble metal interlayer-doping enhances the catalytic activity of 2H–MoS2 from first-principles investigations. International Journal of Hydrogen Energy, 2021. 46(40): p. 21040-21049.
    67. Chen, S. and Y. Pan, Enhancing catalytic properties of noble metal@ MoS2/WS2 heterojunction for the hydrogen evolution reaction. Applied Surface Science, 2022. 591: p. 153168.
    68. Nan, H., et al., Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS nano, 2014. 8(6): p. 5738-5745.
    69. He, Z., et al., Defect engineering in single-layer MoS2 using heavy ion irradiation. ACS applied materials & interfaces, 2018. 10(49): p. 42524-42533.
    70. Kim, J., et al., Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Science advances, 2017. 3(7): p. e1700518.
    71. Wang, S., et al., Ultrastable in‐plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Advanced energy materials, 2018. 8(25): p. 1801345.
    72. Lin, Y.T., S.N. Lai, and J.M. Wu, Simultaneous piezoelectrocatalytic hydrogen‐evolution and degradation of water pollutants by quartz microrods@ few‐layered MoS2 hierarchical heterostructures. Advanced Materials, 2020. 32(34): p. 2002875.
    73. Ronchi, R.M., J.T. Arantes, and S.F. Santos, Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceramics International, 2019. 45(15): p. 18167-18188.
    74. Gogotsi, Y. and B. Anasori, The rise of MXenes, in MXenes. 2023, Jenny Stanford Publishing. p. 3-11.
    128
    75. Liu, X., et al., Achieving record high external quantum efficiency> 86.7% in solar‐blind photoelectrochemical photodetection. Advanced Functional Materials, 2022. 32(28): p. 2201604.
    76. Lu, Q., et al., 2D transition‐metal‐dichalcogenide‐nanosheet‐based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Advanced Materials, 2016. 28(10): p. 1917-1933.
    77. Ahmad, H., et al., Hydrogen from photo-catalytic water splitting process: A review. Renewable and Sustainable Energy Reviews, 2015. 43: p. 599-610.
    78. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37-38.
    79. Lee, K.M., et al., Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water research, 2016. 88: p. 428-448.
    80. Fu, J., et al., g‐C3N4‐Based heterostructured photocatalysts. Advanced Energy Materials, 2018. 8(3): p. 1701503.
    81. Yang, Y., et al., BiOX (X= Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management. Advances in colloid and interface science, 2018. 254: p. 76-93.
    82. Cheng, L., et al., CdS-based photocatalysts. Energy & Environmental Science, 2018. 11(6): p. 1362-1391.
    83. Aldeen, E.S., et al., Altered zirconium dioxide based photocatalyst for enhancement of organic pollutants degradation: A review. Chemosphere, 2022. 304: p. 135349.
    84. Sharma, S., et al., Recent advances in silver bromide-based Z-scheme photocatalytic systems for environmental and energy applications: A review. Journal of Environmental Chemical Engineering, 2021. 9(2): p. 105157.
    85. Yu, C., et al., Ag3PO4-based photocatalysts and their application in organic-polluted wastewater treatment. Environmental Science and Pollution Research, 2022. 29(13): p. 18423-18439.
    86. Sibhatu, A.K., et al., Photocatalytic activity of CuO nanoparticles for organic and inorganic pollutants removal in wastewater remediation. Chemosphere, 2022. 300: p. 134623.
    87. Ali, S., et al., Activity, selectivity, and stability of earth-abundant CuO/Cu2O/Cu0-based photocatalysts toward CO2 reduction. Chemical Engineering Journal, 2022. 429: p. 131579.
    88. Dutta, V., et al., An overview on WO3 based photocatalyst for
    129
    environmental remediation. Journal of Environmental Chemical Engineering, 2021. 9(1): p. 105018.
    89. Hitam, C. and A. Jalil, A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. Journal of environmental management, 2020. 258: p. 110050.
    90. Hou, S., et al., Localized emission from laser-irradiated defects in 2D hexagonal boron nitride. 2D Materials, 2017. 5(1): p. 015010.
    91. Qin, Z., et al., Defect-engineered zeolite porosity and accessibility. Journal of Materials Chemistry A, 2020. 8(7): p. 3621-3631.
    92. Wang, Y.C. and J.M. Wu, Effect of controlled oxygen vacancy on H2‐production through the piezocatalysis and piezophototronics of ferroelectric R3C ZnSnO3 nanowires. Advanced Functional Materials, 2020. 30(5): p. 1907619.
    93. Saleh, N.B., et al., Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species. Science of the total environment, 2016. 568: p. 926-932.
    94. Yan, X., et al., Defect engineering and characterization of active sites for efficient electrocatalysis. Nanoscale, 2021. 13(6): p. 3327-3345.
    95. Weng, B., et al., Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective. Acs Catalysis, 2019. 9(5): p. 4642-4687.
    96. Jiang, J., X. Wang, and H. Guo, Enhanced Interfacial Charge Transfer/Separation By LSPR‐Induced Defective Semiconductor Toward High Co2RR Performance. Small, 2023. 19(33): p. 2301280.
    97. Wu, Y., et al., Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2 @TiO2 with sulfur/oxygen dual-defect. Applied Catalysis B: Environmental, 2022. 303: p. 120878.
    98. Chen, X. and C. Burda, The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials. Journal of the American Chemical Society, 2008. 130(15): p. 5018-5019.
    99. Huang, F., A. Yan, and H. Zhao, Influences of doping on photocatalytic properties of TiO2 photocatalyst. Semiconductor photocatalysis-materials, mechanisms and applications, 2016: p. 31-80.
    100. Yang, D., Z. Wang, and J. Chen, Revealing the role of surface elementary doping in photocatalysis. Catalysis Science & Technology, 2022. 12(11): p. 3634-3638.
    130
    101. Zhou, S., et al., Comparative study on the localized surface plasmon resonance of boron-and phosphorus-doped silicon nanocrystals. ACS nano, 2015. 9(1): p. 378-386.
    102. Zhi, X., et al., Directing the selectivity of CO 2 electroreduction to target C 2 products via non-metal doping on Cu surfaces. Journal of materials chemistry A, 2021. 9(10): p. 6345-6351.
    103. Li, X., et al., Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy, 2021. 81: p. 105671.
    104. Wang, H., et al., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 2014. 43(15): p. 5234-5244.
    105. Liu, D., et al., Constructing a novel Bi2SiO5/BiPO4 heterostructure with extended light response range and enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2018. 236: p. 205-211.
    106. Huang, H., et al., In situ assembly of BiOI@Bi12O17Cl2 p-n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Applied Catalysis B: Environmental, 2016. 199: p. 75-86.
    107. Buskies, U., The efficiency of coal-fired combined-cycle powerplants. Applied Thermal Engineering, 1996. 16(12): p. 959-974.
    108. Starr, M.B. and X. Wang, Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. Scientific reports, 2013. 3(1): p. 1-8.
    109. Özgür, Ü., D. Hofstetter, and H. Morkoc, ZnO devices and applications: a review of current status and future prospects. Proceedings of the IEEE, 2010. 98(7): p. 1255-1268.
    110. Acosta, M., et al., BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Applied Physics Reviews, 2017. 4(4).
    111. Panda, P. and B. Sahoo, PZT to lead free piezo ceramics: a review. Ferroelectrics, 2015. 474(1): p. 128-143.
    112. Koruza, J., et al., (K, Na) NbO3-based piezoelectric single crystals: Growth methods, properties, and applications. Journal of Materials Research, 2020. 35(8): p. 990-1016.
    113. Lu, L., et al., Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 2020. 78: p. 105251.
    114. Zhu, H., et al., Observation of piezoelectricity in free-standing
    131
    monolayer MoS2. Nature nanotechnology, 2015. 10(2): p. 151-155.
    115. Shi, H., et al., Progress in defect engineering strategies to enhance piezoelectric catalysis for efficient water treatment and energy regeneration. Separation and Purification Technology, 2023: p. 125247.
    116. Dai, J., et al., Enhanced piezocatalytic activity of Sr0. 5Ba0. 5Nb2O6 nanostructures by engineering surface oxygen vacancies and self-generated heterojunctions. ACS Applied Materials & Interfaces, 2021. 13(6): p. 7259-7267.
    117. Le, K.T., et al., Piezoelectricity of strain-induced overall water splitting of Ni (OH) 2/MoS 2 heterostructure. Journal of Materials Chemistry A, 2023. 11(7): p. 3481-3492.
    118. Wang, K., et al., The mechanism of piezocatalysis: energy band theory or screening charge effect? Angewandte Chemie, 2022. 134(6): p. e202110429.
    119. Yuan, J., et al., Unraveling synergistic effect of defects and piezoelectric field in breakthrough piezo‐photocatalytic N2 reduction. Advanced Materials, 2024. 36(5): p. 2303845.
    120. Wang, W., et al., Boosting piezocatalytic activity of graphitic carbon nitride for degrading antibiotics through morphologic regulation and chlorine doping. Journal of Cleaner Production, 2023. 415: p. 137818.
    121. Yuan, J., et al., Tuning piezoelectric field for optimizing the coupling effect of piezo-photocatalysis. Applied Catalysis B: Environmental, 2020. 278: p. 119291.
    122. Amiri, O., et al., Exploring innovative approaches for enhanced performance of piezo catalysts. Journal of Cleaner Production, 2023: p. 139847.
    123. Tian, W., et al., Enhanced piezocatalytic activity in ion-doped SnS2 via lattice distortion engineering for BPA degradation and hydrogen production. Nano Energy, 2023. 107: p. 108165.
    124. Chen, X., et al., Enhancing the piezocatalytic performance of C3N5 through boron/oxygen doping for effective degradation of chlortetracycline. Chemical Engineering Science, 2024: p. 120351.
    125. Dong, Z., et al., Enhanced Piezocatalytic Performance of Li-doped BaTiO3 Through a Facile Sonication-Assisted Precipitation Approach. ChemSusChem. n/a(n/a): p. e202400796.
    126. Wang, C., et al., Design strategies and effect comparisons toward efficient piezocatalytic system. Nano Energy, 2023. 107: p. 108093.
    127. Lu, S., et al., Piezoelectric effect-assisted Z-scheme heterojunction
    132
    ZnIn2S4/BaTiO3 for improved photocatalytic reduction of CO2 to CO. Chemical Engineering Journal, 2024. 483: p. 149058.
    128. Hao, P., et al., Rational design of CdS/BiOCl S-scheme heterojunction for effective boosting piezocatalytic H2 evolution and pollutants degradation performances. Journal of Colloid and Interface Science, 2023. 639: p. 343-354.
    129. Jhang, S.-R., et al., Local dipole enhancement of space-charge piezophototronic catalysts of core-shell polytetrafluoroethylene@TiO2 nanospheres. Nano Energy, 2022. 102: p. 107619.
    130. Lin, Y.-T., S.-N. Lai, and J.M. Wu, Simultaneous Piezoelectrocatalytic Hydrogen-Evolution and Degradation of Water Pollutants by Quartz Microrods@Few-Layered MoS2 Hierarchical Heterostructures. Advanced Materials, 2020. 32(34): p. 2002875.
    131. Deka, S., et al., Piezo-photocatalytic and photocatalytic bismuth vanadate nanorods with antibacterial property. ACS Applied Nano Materials, 2022. 5(8): p. 10724-10734.
    132. Zhang, C., et al., Piezo-Photocatalysis over Metal–Organic Frameworks: Promoting Photocatalytic Activity by Piezoelectric Effect. Advanced Materials, 2021. 33(51): p. 2106308.
    133. Hu, P., et al., Piezoelectric nanofoams with the interlaced ultrathin graphene confining Zn–N–C dipoles for efficient piezocatalytic H2 evolution under low-frequency vibration. Journal of Energy Chemistry, 2022. 69: p. 115-122.
    134. Wang, Z., et al., Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nature Communications, 2022. 13(1): p. 130.
    135. Ge, M., et al., Magnetostrictive-piezoelectric-triggered nanocatalytic tumor therapy. Nano Letters, 2021. 21(16): p. 6764-6772.
    136. Zhang, B., et al., Self-powered seawater electrolysis based on a triboelectric nanogenerator for hydrogen production. ACS nano, 2022. 16(9): p. 15286-15296.
    137. Feng, Y., et al., Blue Energy for Green Hydrogen Fuel: A Self‐Powered Electrochemical Conversion System Driven by Triboelectric Nanogenerators. Advanced Energy Materials, 2022. 12(1): p. 2103143.
    138. Murashima, K., et al., Electrocatalytic production of formaldehyde with formaldehyde dehydrogenase using a viologen redox mediator. New Journal of Chemistry, 2022. 46(21): p. 10004-10011.
    133
    139. Lin, H.-Y., et al., Systematic investigation of the piezocatalysis–adsorption duality of polymorphic MoS2 nanoflowers. Applied Catalysis B: Environmental, 2022. 317: p. 121717.
    140. Liu, Z., et al., Heterogeneous nanostructure based on 1T-phase MoS2 for enhanced electrocatalytic hydrogen evolution. ACS applied materials & interfaces, 2017. 9(30): p. 25291-25297.
    141. Xie, J., et al., Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced materials, 2013(40): p. 5807-5813.
    142. Geng, X., et al., Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors. Nano letters, 2017. 17(3): p. 1825-1832.
    143. Chen, Y., et al., Triggering of low-valence molybdenum in multiphasic MoS2 for effective reactive oxygen species output in catalytic fenton-like reactions. ACS applied materials & interfaces, 2019. 11(30): p. 26781-26788.
    144. Han, S., et al., Superior adsorption and regenerable dye adsorbent based on flower-like molybdenum disulfide nanostructure. Scientific reports, 2017. 7(1): p. 43599.
    145. Satheeshkumar, E., et al., One‐Step Simultaneous Exfoliation and Covalent Functionalization of MoS2 by Amino Acid Induced Solution Processes. ChemNanoMat, 2017. 3(3): p. 172-177.
    146. Chaudhary, N., M. Khanuja, and S. Islam, Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength optical sensing applications. Sensors and Actuators A: Physical, 2018. 277: p. 190-198.
    147. Luo, N., et al., S defect-rich ultrathin 2D MoS2: the role of S point-defects and S stripping-defects in the removal of Cr (VI) via synergistic adsorption and photocatalysis. Applied Catalysis B: Environmental, 2021. 299: p. 120664.
    148. Chen, J., et al., The activation of porous atomic layered MoS2 basal-plane to induce adjacent Mo atom pairs promoting high efficiency electrochemical N2 fixation. Applied Catalysis B: Environmental, 2021. 285: p. 119810.
    149. Ge, J., et al., Dual-metallic single Ru and Ni atoms decoration of MoS2 for high-efficiency hydrogen production. Applied Catalysis B: Environmental, 2021. 298: p. 120557.
    150. Zhao, W., et al., Synthesis of novel 1T/2H-MoS2 from MoO3
    134
    nanowires with enhanced photocatalytic performance. Nanomaterials, 2020. 10(6): p. 1124.
    151. Liu, Z., et al., Activation engineering on metallic 1T-MoS2 by constructing In-plane heterostructure for efficient hydrogen generation. Applied Catalysis B: Environmental, 2022. 300: p. 120696.
    152. Tu, C.-Y. and J.M. Wu, Localized surface plasmon resonance coupling with piezophototronic effect for enhancing hydrogen evolution reaction with Au@ MoS2 nanoflowers. Nano Energy, 2021. 87: p. 106131.
    153. Palencia-Ruiz, S., et al., Stability and catalytic properties of 1T-MoS2 obtained via solvothermal synthesis. Applied Catalysis A: General, 2021. 626: p. 118355.
    154. Mei, J., et al., Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustainable Materials and Technologies, 2020. 25: p. e00156.
    155. Feng, W., et al., Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory‐oriented photonic tumor hyperthermia. Advanced Functional Materials, 2019. 29(22): p. 1901942.
    156. Meshkian, R., et al., Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scripta Materialia, 2015. 108: p. 147-150.
    157. Ramki, S., et al., Hierarchical multi-layered molybdenum carbide encapsulated oxidized carbon nanofiber for selective electrochemical detection of antimicrobial agents: inter-connected path in multi-layered structure for efficient electron transfer. Inorganic Chemistry Frontiers, 2019. 6(7): p. 1680-1693.
    158. Zhou, H., et al., Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation. Nature Communications, 2021. 12(1): p. 5510.
    159. Camacho-López, M., et al., Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation. Optical Materials, 2011. 33(3): p. 480-484.
    160. Pan, L.F., et al., Molybdenum carbide stabilized on graphene with high electrocatalytic activity for hydrogen evolution reaction. Chemical communications, 2014. 50(86): p. 13135-13137.
    161. Guo, S.-L., S.-N. Lai, and J.M. Wu, Strain-induced ferroelectric heterostructure catalysts of hydrogen production through piezophototronic and piezoelectrocatalytic system. ACS nano, 2021. 15(10): p. 16106-16117.
    135
    162. Chung, Y.J., et al., Coupling effect of piezo–flexocatalytic hydrogen evolution with hybrid 1T‐and 2H‐phase few‐layered MoSe2 nanosheets. Advanced Energy Materials, 2020. 10(42): p. 2002082.
    163. Zhao, Z., et al., Vertically aligned MoS2/Mo2C hybrid nanosheets grown on carbon paper for efficient electrocatalytic hydrogen evolution. ACS Catalysis, 2017. 7(10): p. 7312-7318.
    164. Ren, J., et al., 2D organ-like molybdenum carbide (MXene) coupled with MoS 2 nanoflowers enhances the catalytic activity in the hydrogen evolution reaction. CrystEngComm, 2020. 22(8): p. 1395-1403.
    165. Yang, S., et al., Unique three-dimensional Mo2C@ MoS2 heterojunction nanostructure with S vacancies as outstanding all-pH range electrocatalyst for hydrogen evolution. Journal of Catalysis, 2019. 371: p. 20-26.
    166. Chu, K., et al., Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS applied materials & interfaces, 2020. 12(6): p. 7081-7090.
    167. Lai, S.-N., et al., An ultraefficient surface functionalized Ti 3 C 2 T x MXene piezocatalyst: synchronous hydrogen evolution and wastewater treatment. Journal of Materials Chemistry A, 2024. 12(6): p. 3340-3351.
    168. Lin, J.-H., et al., Single-and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor. Nano Energy, 2017. 31: p. 575-581.
    169. Guzman, F., S.S. Chuang, and C. Yang, Role of methanol sacrificing reagent in the photocatalytic evolution of hydrogen. Industrial & Engineering Chemistry Research, 2013. 52(1): p. 61-65.
    170. Guzman, F., S.S. Chuang, and C. Yang, Role of methanol sacrificing reagent in the photocatalytic evolution of hydrogen. Industrial & Engineering Chemistry Research, 2012. 52(1): p. 61-65.
    171. Carballo, R., G. Iglesias, and A. Castro, Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain). Renewable Energy, 2009. 34(6): p. 1517-1524.
    172. Khazaei, M., et al., Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. Physical Chemistry Chemical Physics, 2014. 16(17): p. 7841-7849.
    173. Lei, J., A. Kutana, and B.I. Yakobson, Predicting stable phase monolayer Mo 2 C (MXene), a superconductor with chemically-tunable critical temperature. Journal of Materials Chemistry C, 2017. 5(14): p. 3438-3444.
    136
    174. Lee, S.Y., et al., Large work function modulation of monolayer MoS2 by ambient gases. Acs Nano, 2016. 10(6): p. 6100-6107.
    175. á Wang, Q., K. áKalantar-Zadeh, A. áKis, JN áColeman, MS áStrano. Nat. Nanotechnol, 2012. 7: p. 699.

    QR CODE