研究生: |
黃魁彥 Huang, Kuei-Yen |
---|---|
論文名稱: |
聚脯胺酸胜肽的探討:末端帶電荷胺基酸對結構之影響、與人類Pin1 WW區間的結合親和力及作為酯類水解酶之設計 Study of polyproline peptides: the effects of terminal charged residues on conformation, the binding affinity for human Pin1 WW domain and the design of artificial esterases |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: |
江昀緯
Chiang, Yun-Wei 朱立岡 Chu, Li-Kang 陳青諭 Chen, Chin-Yu 吳淑褓 Wu, Shu-Pao |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 130 |
中文關鍵詞: | 脯胺酸 、聚脯胺酸構形 、結合親和力 、人工酯類水解酶 |
外文關鍵詞: | Proline, Polyproline conformation, Binding affinity, Artificial esterase |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚脯胺酸螺旋有兩種主要的異構物,包含全為順式胜肽鍵的第一型 (PPI) 與全為反式胜肽鍵的第二型 (PPII) 聚脯胺酸螺旋結構,此二構形可幫助我們了解脯胺酸胜肽鍵異構的原因。PPI與PPII的穩定性可被許多效應所調控,但影響聚脯胺酸結構穩定性的原因仍未被完全了解,論文第二章中,將以不同帶電荷胺基酸置入聚脯胺酸結構的兩端以探討其對結構的影響。圓二色光譜儀 (CD) 的量測中發現正電荷胺基酸在碳端或負電荷胺基酸在氮端皆可以穩定PPII螺旋結構,而且其中以前者影響甚劇,代表著靜電作用力具方向性且正電荷胺基酸與碳端羧酸基的作用力穩定PPII結構之效果較負電荷胺基酸與氮端胺基的作用力來得大。相反地,在氮端正電荷胺基酸比負電荷胺基酸適合穩定PPI結構。在PPI結構最佳化模型計算結果中,發現正電荷胺基酸在碳端展現出與其他胜肽相反的偶極矩方向,可以說明極性反轉可能為不傾向形成PPI螺旋的原因。此部分結果顯示,末端胺基酸的靜電作用力可以大幅影響聚脯胺酸結構的穩定性,對日後設計聚脯胺酸構形為基底的生物材料的應用上有顯著的幫助。
此外,Pin1為細胞循環中重要的順反異構酶,若Pin1功能的過度或缺乏調控分別會造成癌症或阿茲海默症,故Pin1功能的調控為當今研究的重點之一。Pin1蛋白有兩個區間,其一為WW區間,負責辨認與結合含有磷酸化絲/蘇胺酸-脯胺酸位元(pS/pT-P motifs),另一PPIase區間則負責催化此位元之胜肽鍵順反異構化進而管控細胞循環。論文第三章中,我們根據含磷酸化胺基酸之聚脯胺酸構形配體Myt1-T412 [PPA(pT)PP] ,將其pS/pT-p motif中的脯胺酸置換成帶有不同的拉電子基的4號碳取代脯胺酸衍生物而合成一系列短胜肽配體,想要藉此尋找Pin1的抑制劑。等溫滴定微量熱儀 (ITC) 與螢光異向性 (FA) 的分析中發現(2S,4R)-4-fluoroproline可以增加其與Pin1 WW區間的結合能力,CD光譜則發現與Pin1 WW區間結合能力越好的胜肽越傾向形成PPII螺旋結構,核磁共振光譜儀 (NMR) 的1H-15N HSQC圖譜與結構模擬也發現(2S,4R)-4-fluoroproline與Pin1 WW區間上的結合位點中的34號色胺酸有著較強的C−H···π作用力,這些結果提供了設計Pin1抑制劑的新資訊。
最後,由於天然酵素難以取得且昂貴,加上其不穩定性,研發符合經濟效益之人工酵素於近期如火如荼地展開。論文的第四章中,設計了連結含催化二聯體〈組胺酸-組胺酸或絲胺酸-組胺酸〉(His-His or His-Ser) 的聚脯胺酸骨架與自組裝蛋白之新人工水解酶 (H2H5和H2S5) 。CD光譜顯示,從pH 5到10的過程中,此二胜肽的二級結構由隨機螺旋轉為β-摺板構形。在pH 9.0的狀況下,以穿透式電子 (TEM) 及原子力學顯微鏡 (AFM) 皆可觀察到自組裝的奈米纖維網狀結構;傅立葉轉換衰減全反射红外光譜儀中也可以觀測到其β-摺板構形的低頻與高頻振動模式。此結果顯示,β-摺板構形與纖維結構的多寡也與催化能力有高度相關。利用p-nitrophenyl acetate (p-NPA) 作為酯類水解反應的受體,在pH 9.0的狀態下,我們發現H2H5具有高的酯類水解反應催化效率,而H2S5則是在pH 10.0的狀態下有高催化效率。此外,H2S5也對於p-nitrophenyl-(2-phenyl)-propanoate (p-NPP) 及 p-nitrophenyl-methoxy-acetate (p-NPMA) 有較高的親和力,此部分的結果提供了新的人工水解酶的設計方法。
Polyproline is a useful system for better understanding proline isomerization because it exists predominantly as two forms, all-cis polyproline I (PPI) and all-trans polyproline II (PPII) helices. In Chapter 2, we study the impacts of terminal charged residues on polyproline conformation. Circular dichroism (CD) measurements show that a cationic residue at the C-terminus or an anionic residue at the N-terminus increases the stability of a PPII helix; in particular, the C-terminal cationic residues impose an enormous impact on PPII stability, suggesting that the stabilization effect of electrostatic interactions on PPII is directional. In contrast, incorporating a cationic residue seems more favorable than adding an anionic residue into the N-terminus because the cationic residue can stabilize PPI. The predicted dipole moments from optimized oligopeptide models reveal that the macrodipole of the peptides with a cationic residue at the C-terminus exhibits the opposite direction to that of other peptides in the PPI conformation, suggesting that such a dipole distortion may cause these peptides to disfavor PPI helices. This study provides useful information to the design of polyproline-based scaffolds for biomedical applications.
Over- and under-regulation of Pin1, which modulates the cis-trans isomerization of prolyl bonds in cell cycle, may lead to cancers and Alzheimer’s diseases, respectively. Thus, the regulation of Pin1 function has become an attractive topic. The WW domain of human Pin1 can recognize the phosphoserine/ phosphothreonine-proline (pS/pT-P) motifs, while its PPIase domain catalyzes the cis/trans isomerization of prolyl bonds to regulate the cell cycle. In Chapter 3, on the basis of the ligand Myt1-T412 [PPA(pT)PP], we synthesized several phosphopeptides in which the proline residue in the pT-P motif was replaced with various 4-substituted proline derivatives to develop a better inhibitor of Pin1. Isothermal titration calorimetry (ITC) and fluorescence anisotropy (FA) analyses show that the replacement of proline with (2S,4R)-4-fluoroproline increases the binding affinity of the peptide. CD measurements suggest that a more PPII-like structure of phosphopeptides makes them bind to the WW domain more tightly. Chemical shift perturbation experiments also indicate that (2S,4R)-4-fluoroproline interacts with Trp34 of the WW domain in the binding site. Results of molecular modeling further suggested that a strong C−H···π interaction induced by (2S,4R)-4-fluoroproline is important in enhancing the affinity of the peptide for the WW domain. The results provide new valuable information for designing and developing effective inhibitors of human Pin1.
Besides, researchers have been using different approaches to develop artificial enzymes with stability and availability due to the high cost and instability of natural enzymes. In Chapter 4, we combined a polyproline scaffold containing a catalytic dyad of His-His or Ser-His with a self-assembling peptide MAX1 to design new catalysts (H2H5 and H2S5) for ester hydrolysis. CD measurements indicate that these peptides have a conformational change from random coils to β-sheets upon increasing the pH values from 5 to 10. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) shows that these two peptides can self-assemble into similar network fibrils. The attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectra display specific vibration modes corresponding to the β-structures at pH 9.0. The self-assembled β-structures have a positive effect on the catalytic efficiency for ester hydrolysis. Using p-nitrophenyl acetate (p-NPA) as a substrate, H2H5 exhibits a relatively high catalytic efficiency at pH 9.0, while H2S5 has an even better activity at pH 10.0. Moreover, the H2S5 has a better efficiency on catalyzing p-nitrophenyl-(2-phenyl)-propanoate (p-NPP) and p-nitrophenyl-methoxy-acetate (p-NPMA) than H2H5 due to that it has a higher affinity for these substrates. The results demonstrate that combining the polyproline scaffold with the self-assembling peptide can achieve a high catalytic activity on ester hydrolysis, providing a new design for the development of effective artificial enzymes.
References
1. Stoker, H. S., Organic and Biological Chemistry. Cengage Learning: 2015.
2. Dongardive, J.; Abraham, S., Reaching Optimized Parameter Set: Protein Secondary Structure Prediction Using Neural Network. Neural Comput. Appl. 2017, 28 (8), 1947-1974.
3. Wang, J., Anharmonic Vibrational Signatures of Peptides-Methods and Applications. Theophile, T., Ed. IntechOpen: 2015.
4. Butterworth, P. J., Lehninger: principles of biochemistry (4th edn) D. L. Nelson and M. C. Cox, W. H. Freeman & Co., New York, 1119 pp (plus 17 pp glossary), ISBN 0-7167-4339-6 (2004). Cell Biochem. Funct. 2005, 23 (4), 293-294.
5. Improta, R.; Benzi, C.; Barone, V., Understanding the Role of Stereoelectronic Effects in Determining Collagen Stability. 1. A Quantum Mechanical Study of Proline, Hydroxyproline, and Fluoroproline Dipeptide Analogues in Aqueous Solution. J. Am. Chem. Soc. 2001, 123 (50), 12568-12577.
6. MacArthur, M. W.; Thornton, J. M., Influence of Proline Residues on Protein Conformation. J. Mol. Biol. 1991, 218 (2), 397-412.
7. (a) Brandts, J. F.; Halvorson, H. R.; Brennan, M., Consideration of the Possibility that the Slow Step in Protein Denaturation Reactions is due to cis-trans Isomerism of Proline Residues. Biochemistry 1975, 14 (22), 4953-4963; (b) Stewart, D. E.; Sarkar, A.; Wampler, J. E., Occurrence and Role of cis Peptide Bonds in Protein Structures. J. Mol. Biol. 1990, 214 (1), 253-260.
8. Wu, W.-J.; Raleigh, D. P., Local Control of Peptide Conformation: Stabilization of cis Proline Peptide Bonds by Aromatic Proline Interactions. 1998, 45 (5), 381-394.
9. Fischer, G., Chemical Aspects of Peptide Bond Isomerisation. Chem. Soc. Rev. 2000, 29 (2), 119-127.
10. (a) Ramachandran, G. N.; Sasisekharan, V., Conformation of Polypeptides and Proteins. In Adv. Protein Chem., Anfinsen, C. B.; Anson, M. L.; Edsall, J. T.; Richards, F. M., Eds. Academic Press: 1968; Vol. 23, pp 283-437; (b) Schulz, G. E.; Schirmer, R. H., Prediction of Secondary Structure from the Amino Acid Sequence. In Principles of Protein Structure, Schulz, G. E.; Schirmer, R. H., Eds. Springer New York: New York, NY, 1979; p 25.
11. Schmid, F. X.; Baldwin, R. L., Acid Catalysis of the Formation of the Slow-Folding Species of RNase A: Evidence that the Reaction is Proline Isomerization. 1978, 75 (10), 4764-4768.
12. (a) Ferreon, J. C.; Hilser, V. J., The Effect of the Polyproline II (PPII) Conformation on the Denatured State Entropy. Protein Sci. 2003, 12 (3), 447-457; (b) Hamburger, J. B.; Ferreon, J. C.; Whitten, S. T.; Hilser, V. J., Thermodynamic Mechanism and Consequences of the Polyproline II (PII) Structural Bias in the Denatured States of Proteins. Biochemistry 2004, 43 (30), 9790-9799; (c) Whittington, S. J.; Chellgren, B. W.; Hermann, V. M.; Creamer, T. P., Urea Promotes Polyproline II Helix Formation: Implications for Protein Denatured States. Biochemistry 2005, 44 (16), 6269-6275; (d) Shi, Z.; Chen, K.; Liu, Z.; Kallenbach, N. R., Conformation of the Backbone in Unfolded Proteins. Chem. Rev. 2006, 106 (5), 1877-1897; (e) Wedemeyer, W. J.; Welker, E.; Scheraga, H. A., Proline cis−trans Isomerization and Protein Folding. Biochemistry 2002, 41 (50), 14637-14644.
13. (a) Siligardi, G.; Drake, A. F., The Importance of Extended Conformations and, in Particular, the PII Conformation for the Molecular Recognition of Peptides. Biopolymers 1995, 37 (4), 281-292; (b) Vanhoof, G.; Goossens, F.; De Meester, I.; Hendriks, D.; Scharpe, S., Proline Motifs in Peptides and Their Biological Processing. FASEB J. 1995, 9 (9), 736-744; (c) Kleywegt, G. J.; Jones, T. A., Phi/Psi-Chology: Ramachandran Revisited. Structure 1996, 4 (12), 1395-1400; (d) Brandsch, M.; Thunecke, F.; Kullertz, G.; Schutkowski, M.; Fischer, G.; Neubert, K., Evidence for the Absolute Conformational Specificity of the Intestinal H+/Peptide Symporter, PEPT1. J. Biol. Chem. 1998, 273 (7), 3861-3864; (e) Sarkar, P.; Reichman, C.; Saleh, T.; Birge, R. B.; Kalodimos, C. G., Proline cis-trans Isomerization Controls Autoinhibition of a Signaling Protein. Mol. Cell. Biol. 2007, 25 (3), 413-426.
14. Salahuddin, A., Proline Peptide Isomerization and Protein Folding. J. Biosciences 1984, 6 (4), 349-355.
15. (a) Steinberg, I. Z.; Harrington, W. F.; Berger, A.; Sela, M.; Katchalski, E., The Configurational Changes of Poly-L-Proline in Solution. J. Am. Chem. Soc. 1960, 82 (20), 5263-5279; (b) Reimer, U.; Scherer, G.; Drewello, M.; Kruber, S.; Schutkowski, M.; Fischer, G., Side-Chain Effects on Peptidyl-Prolyl cis/trans Isomerisation. J. Mol. Biol. 1998, 279 (2), 449-460.
16. (a) Fischer, G.; Bang, H.; Mech, C., Determination of Enzymatic Catalysis for the cis-trans-Isomerization of Peptide Binding in Proline-Containing Peptides. Biomed. Biochim. Acta. 1984, 43 (10), 1101-11; (b) Fischer, G.; Wittmann-Liebold, B.; Lang, K.; Kiefhaber, T.; Schmid, F. X., Cyclophilin and Peptidyl-Prolyl cis-trans Isomerase are Probably Identical Proteins. Nature 1989, 337, 476.
17. (a) Cowan, P. M.; McGavin, S., Structure of Poly-L-Proline. Nature 1955, 176, 501; (b) Benedetti, E.; Bavoso, A.; di Blasio, B.; Pavone, V.; Pedone, C.; Toniolo, C.; Bonora, G. M., Solid-State Geometry and Conformation of Linear, Diastereoisomeric Oligoprolines. Biopolymers 1983, 22 (1), 305-317; (c) Matsuzaki, T., The Crystal Structure of t-Butyloxycarbonyltetra-L-Proline Benzyl Ester. Acta Crystallogr. B 1974, 30 (4), 1029-1036; (d) Wilhelm, P.; Lewandowski, B.; Trapp, N.; Wennemers, H., A Crystal Structure of an Oligoproline PPII-Helix, at Last. J. Am. Chem. Soc. 2014, 136 (45), 15829-15832.
18. Beane, G.; Boldt, K.; Kirkwood, N.; Mulvaney, P., Energy Transfer between Quantum Dots and Conjugated Dye Molecules. J. Phys. Chem. C 2014, 118 (31), 18079-18086.
19. (a) Knof, S.; Engel, J., Conformational Stability, Partial Specific Volumes and Spectroscopic Properties of Poly-L-Proline, Poly-L-Hydroxyproline and Some of its O-Acyl-Derivatives in Various Solvent Systems. Isr. J. Chem. 1974, 12 (1‐2), 165-177; (b) Mutter, M.; Wöhr, T.; Gioria, S.; Keller, M., Pseudo-Prolines: Induction of cis/trans-Conformational Interconversion by Decreased Transition State Barriers. Peptide Sci. 1999, 51 (2), 121-128; (c) Kakinoki, S.; Hirano, Y.; Oka, M., On the Stability of Polyproline-I and II Structures of Proline Oligopeptides. Polym. Bull. 2005, 53 (2), 109-115.
20. Dugave, C.; Demange, L., Cis−trans Isomerization of Organic Molecules and Biomolecules: Implications and Applications. Chem. Rev. 2003, 103 (7), 2475-2532.
21. Eker, F.; Griebenow, K.; Cao, X.; Nafie, L. A.; Schweitzer-Stenner, R., Preferred Peptide Backbone Conformations in the Unfolded State Revealed by the Structure Analysis of Alanine-Based (AXA) Tripeptides in Aqueous Solution. 2004, 101 (27), 10054-10059.
22. Rucker, A. L.; Pager, C. T.; Campbell, M. N.; Qualls, J. E.; Creamer, T. P., Host-Guest Scale of Left-Handed Polyproline II Helix Formation. Proteins 2003, 53 (1), 68-75.
23. Brown, A. M.; Zondlo, N. J., A Propensity Scale for Type II Polyproline Helices (PPII): Aromatic Amino Acids in Proline-Rich Sequences Strongly Disfavor PPII due to Proline-Aromatic Interactions. Biochemistry 2012, 51 (25), 5041-5051.
24. Lin, L. N.; Brandts, J. F., Role of cis-trans Isomerism of the Peptide Bond in Protease Specificity. Kinetic Studies on Small Proline-Containing Peptides and on Polyproline. Biochemistry 1979, 18 (23), 5037-5042.
25. Lin, L.-N.; Brandts, J. F., Kinetic Mechanism for Conformational Transitions Between Poly-L-Prolines I and II: A Study Utilizing the cis-trans Specificity of a Proline-Specific Protease. Biochemistry 1980, 19 (13), 3055-3059.
26. Lin, Y.-J.; Horng, J.-C., Impacts of Terminal (4R)-Fluoroproline and (4S)-Fluoroproline Residues on Polyproline Conformation. Amino acids 2014, 46 (10), 2317-2324.
27. Lin, Y.-J.; Chu, L.-K.; Horng, J.-C., Effects of the Terminal Aromatic Residues on Polyproline Conformation: Thermodynamic and Kinetic Studies. J. Phys. Chem. B 2015, 119 (52), 15796-15806.
28. Zarrinpar, A.; Bhattacharyya, R. P.; Lim, W. A., The Structure and Function of Proline Recognition Domains. Sci. STKE 2003, 2003 (179), Re8.
29. Kullertz, G.; Luthe, S.; Fischer, G., Semiautomated Microtiter Plate Assay for Monitoring Peptidyl Prolyl cis/trans Isomerase Activity in Normal and Pathological Human Sera. Clin. Chem. 1998, 44 (3), 502-508.
30. Fischer, G.; Aumuller, T., Regulation of Peptide Bond cis/trans Isomerization by Enzyme Catalysis and its Implication in Physiological Processes. Rev. Physiol. Bioch. P. 2003, 148, 105-150.
31. Yaffe, M. B.; Schutkowski, M.; Shen, M.; Zhou, X. Z.; Stukenberg, P. T.; Rahfeld, J. U.; Xu, J.; Kuang, J.; Kirschner, M. W.; Fischer, G.; Cantley, L. C.; Lu, K. P., Sequence-Specific and Phosphorylation-Dependent Proline Isomerization: A Potential Mitotic Regulatory Mechanism. Science 1997, 278 (5345), 1957-1960.
32. Zoldak, G.; Aumuller, T.; Lucke, C.; Hritz, J.; Oostenbrink, C.; Fischer, G.; Schmid, F. X., A Library of Fluorescent Peptides for Exploring the Substrate Specificities of Prolyl Isomerases. Biochemistry 2009, 48 (43), 10423-10436.
33. Ottiger, M.; Zerbe, O.; Guntert, P.; Wuthrich, K., The NMR Solution Conformation of Unligated Human Cyclophilin A. J. Mol. Biol. 1997, 272 (1), 64-81.
34. Van Duyne, G. D.; Standaert, R. F.; Karplus, P. A.; Schreiber, S. L.; Clardy, J., Atomic Structure of FKBP-FK506, an Immunophilin-Immunosuppressant Complex. Science 1991, 252 (5007), 839-842.
35. Terada, T.; Shirouzu, M.; Fukumori, Y.; Fujimori, F.; Ito, Y.; Kigawa, T.; Yokoyama, S.; Uchida, T., Solution Structure of the Human Parvulin-Like Peptidyl Prolyl cis/trans Isomerase, hPar14. J. Mol. Biol. 2001, 305 (4), 917-926.
36. Bayer, E.; Goettsch, S.; Mueller, J. W.; Griewel, B.; Guiberman, E.; Mayr, L. M.; Bayer, P., Structural Analysis of the Mitotic Regulator hPin1 in Solution: Insights into Domain Architecture and Substrate Binding. J. Biol. Chem. 2003, 278 (28), 26183-26193.
37. Zhang, M.; Wang, X. J.; Chen, X.; Bowman, M. E.; Luo, Y.; Noel, J. P.; Ellington, A. D.; Etzkorn, F. A.; Zhang, Y., Structural and Kinetic Analysis of Prolyl-Isomerization/Phosphorylation Cross-Talk in the CTD Code. ACS Chem. Biol. 2012, 7 (8), 1462-1470.
38. Yeh, E. S.; Means, A. R., Pin1, the Cell Cycle and Cancer. Nat. Rev. Cancer 2007, 7 (5), 381-388.
39. Zarrinpar, A.; Lim, W. A., Converging on Proline: The Mechanism of WW Domain Peptide Recognition. Nat. Struct. Biol. 2000, 7 (8), 611-613.
40. (a) Ranganathan, R.; Lu, K. P.; Hunter, T.; Noel, J. P., Structural and Functional Analysis of the Mitotic Rotamase Pin1 Suggests Substrate Recognition is Phosphorylation Dependent. Cell 1997, 89 (6), 875-886; (b) Liou, Y. C.; Zhou, X. Z.; Lu, K. P., Prolyl Isomerase Pin1 as a Molecular Switch to Determine the Fate of Phosphoproteins. Trends Biochem. Sci. 2011, 36 (10), 501-514.
41. Theuerkorn, M.; Fischer, G.; Schiene-Fischer, C., Prolyl cis/trans Isomerase Signalling Pathways in Cancer. Curr. Opin. Pharmacol. 2011, 11 (4), 281-287.
42. Cozzone, A. J., Protein Phosphorylation in Prokaryotes. Annu. Rev. Microbiol. 1988, 42 (1), 97-125.
43. Lu, K. P.; Hanes, S. D.; Hunter, T., A Human Peptidyl-Prolyl Isomerase Essential for Regulation of Mitosis. Nature 1996, 380 (6574), 544-547.
44. (a) Ayala, G.; Wang, D.; Wulf, G.; Frolov, A.; Li, R.; Sowadski, J.; Wheeler, T. M.; Lu, K. P.; Bao, L., The Prolyl Isomerase Pin1 is a Novel Prognostic Marker in Human Prostate Cancer. Cancer Res. 2003, 63 (19), 6244-6251; (b) Chen, S. Y.; Wulf, G.; Zhou, X. Z.; Rubin, M. A.; Lu, K. P.; Balk, S. P., Activation of Beta-Catenin Signaling in Prostate Cancer by Peptidyl-Prolyl Isomerase Pin1-Mediated Abrogation of the Androgen Receptor-Beta-Catenin Interaction. Mol. Cell. Biol. 2006, 26 (3), 929-939; (c) Kuramochi, J.; Arai, T.; Ikeda, S.; Kumagai, J.; Uetake, H.; Sugihara, K., High Pin1 Expression is Associated with Tumor Progression in Colorectal Cancer. J. Surg. Oncol. 2006, 94 (2), 155-160.
45. (a) Balastik, M.; Lim, J.; Pastorino, L.; Lu, K. P., Pin1 in Alzheimer's Disease: Multiple Substrates, One Regulatory Mechanism? BBA Biomembranes 2007, 1772 (4), 422-429; (b) Bulbarelli, A.; Lonati, E.; Cazzaniga, E.; Gregori, M.; Masserini, M., Pin1 Affects Tau Phosphorylation in Response to Aβ-Oligomers. Mol. Cell. Neurosci. 2009, 42, 75-80; (c) Min, S. H.; Cho, J. S.; Oh, J. H.; Shim, S. B.; Hwang, D. Y.; Lee, S. H.; Jee, S. W.; Lim, H. J.; Kim, M. Y.; Sheen, Y. Y.; Lee, S. H.; Kim, Y. K., Tau and GSK3β Dephosphorylations are Requiredfor Regulating Pin1 Phosphorylation. Neurochem. Res. 2005, 30 (8), 955-961; (d) Zhou, X. Z.; Kops, O.; Werner, A.; Lu, P. J.; Shen, M.; Stoller, G.; Kullertz, G.; Stark, M.; Fischer, G.; Lu, K. P., Pin1-Dependent Prolyl Isomerization Regulates Dephosphorylation of CDC25C and Tau Proteins. Mol. Cell. Biol. 2000, 6 (4), 873-883; (e) Lu, P. J.; Wulf, G.; Zhou, X. Z.; Davies, P.; Lu, K. P., The Prolyl Isomerase Pin1 Restores the Function of Alzheimer-Associated Phosphorylated Tau Protein. Nature 1999, 399 (6738), 784-788.
46. Pastorino, L.; Sun, A.; Lu, P.-J.; Zhou, X. Z.; Balastik, M.; Finn, G.; Wulf, G.; Lim, J.; Li, S.-H.; Li, X.; Xia, W.; Nicholson, L. K.; Lu, K. P., The Prolyl Isomerase Pin1 Regulates Amyloid Precursor Protein Processing and Amyloid-β Production. Nature 2006, 440, 528.
47. Bruice, P. Y., Organic Chemistry. 2014.
48. (a) Bruice, T. C.; Schmir, G. L., Imidazole Catalysis. I. The Catalysis of the Hydrolysis of Phenyl Acetates by Imidazole. J. Am. Chem. Soc. 1957, 79 (7), 1663-1667; (b) Kirsch, J. F.; Jencks, W. P., Base Catalysis of Imidazole Catalysis of Ester Hydrolysis. J. Am. Chem. Soc. 1964, 86 (5), 833-837; (c) Pandit, N. K.; Connors, K. A., Kinetics and Mechanism of Hydroxy Group Acetylations Catalyzed by N-Methylimidazole. J. Pharm. Sci. 1982, 71 (5), 485-491; (d) Gold, D. H.; Gregor, H. P., Metal-Polyelectrolyte Complexes. VII. The Poly-N-Vinylimimdazole Silver(I) Complex and the Imidazole-Silver(I) Complex J. Phys. Chem. 1960, 64 (10), 1461-1463; (e) Okhapkin, I. M.; Bronstein, L. M.; Makhaeva, E. E.; Matveeva, V. G.; Sulman, E. M.; Sulman, M. G.; Khokhlov, A. R., Thermosensitive Imidazole-Containing Polymers as Catalysts in Hydrolytic Decomposition of p-Nitrophenyl Acetate. Macromolecules 2004, 37 (21), 7879-7883.
49. Bezer, S.; Matsumoto, M.; Lodewyk, M. W.; Lee, S. J.; Tantillo, D. J.; Gagné, M. R.; Waters, M. L., Identification and Optimization of Short Helical Peptides With Novel Reactive Functionality as Catalysts for Acyl Transfer by Reactive Tagging. Org. Biomol. Chem. 2014, 12 (9), 1488-1494.
50. 洪珮瑜, 含組胺酸之聚脯胺酸胜肽與類膠原蛋白胜肽對酯類水解反應的催化效率探討. 國立清華大學化學系所碩士論文 2017.
51. Gutfreund, H.; Sturtevant, J. M., The Mechanism of the Reaction of Chymotrypsin with p-Nitrophenyl Acetate. Biochem. J. 1956, 63 (4), 656.
52. Godzhaev, N. M., Study of Trypsin-Substrate and Trypsin-Inhibitor complexes. 1. Conformation of Asp-102, His-57 and Ser-195 Residues in the Trypsin Active Center. Mol. Biol. 1984, 18 (5), 1432-1435.
53. Massiah, M. A.; Viragh, C.; Reddy, P. M.; Kovach, I. M.; Johnson, J.; Rosenberry, T. L.; Mildvan, A. S., Short, Strong Hydrogen Bonds at the Active Site of Human Acetylcholinesterase: Proton NMR Studies. Biochemistry 2001, 40 (19), 5682-5690.
54. (a) Clark, J. D.; Schievella, A. R.; Nalefski, E. A.; Lin, L.-L., Cytosolic Phospholipase A2. J. Lipid Mediat. Cell 1995, 12 (2), 83-117; (b) Mignatti, P.; Rifkin, D. B., Plasminogen Activators and Matrix Metalloproteinases in Angiogenesis. Enzyme Protein 1996, 49 (1-3), 117-137; (c) DeClerck, Y. A.; Imren, S.; Montgomery, A. M.; Mueller, B. M.; Reisfeld, R. A.; Laug, W. E., Proteases and Protease Inhibitors in Tumor Progression. Adv. Exp. Med. Biol. 1997, 425, 89-97; (d) Gorrell, M. D., Dipeptidyl Peptidase IV and Related Enzymes in Cell Biology and Liver Disorders. Clin. Sci. 2005, 108 (4), 277-292.
55. De Munter, S.; Kohn, M.; Bollen, M., Challenges and Opportunities in the Development of Protein Phosphatase-Directed Therapeutics. ACS Chem. Biol. 2013, 8 (1), 36-45.
56. (a) Head, M. B.; Mistry, K. S.; Ridings, B. J.; Smith, C. A.; Parker, M. J., Nucleophilic and Enzymic Catalysis of p-Nitrophenyl Acetate Hydrolysis. J. Chem. Educ. 1995, 72 (2), 184; (b) Ohkubo, K.; Ogata, H.; Yamaki, K., Stereoselective Esterolysis of Dipeptide-Type Amino Acid Esters with Di- and Tri-Peptide-Type L-Histidine Derivatives in the Solution of a Chiral Cationic Surfactant. J. Mol. Catal. 1984, 26 (1), 1-5.
57. (a) Barton, J. S., A Comprehensive Enzyme Kinetic Exercise for Biochemistry. J. Chem. Educ. 2011, 88 (9), 1336-1339; (b) Hiscock, J. R.; Sambrook, M. R.; Cranwell, P. B.; Watts, P.; Vincent, J. C.; Xuereb, D. J.; Wells, N. J.; Raja, R.; Gale, P. A., Tripodal Molecules for the Promotion of Phosphoester Hydrolysis. Chem. Commun. 2014, 50 (47), 6217-6220.
58. Li, Y.; Zhao, Y.; Hatfield, S.; Wan, R.; Zhu, Q.; Li, X.; McMills, M.; Ma, Y.; Li, J.; Brown, K. L.; He, C.; Liu, F.; Chen, X., Dipeptide Seryl-Histidine and Related Oligopeptides Cleave DNA, Protein, and a Carboxyl Ester. Bioorg. Med. Chem. 2000, 8 (12), 2675-2680.
59. Blow, D. M.; Birktoft, J. J.; Hartley, B. S., Role of a Buried Acid Group in the Mechanism of Action of Chymotrypsin. Nature 1969, 221, 337.
60. Khersonsky, O.; Tawfik, D. S., The Histidine 115-Histidine 134 Dyad Mediates the Lactonase Activity of Mammalian Serum Paraoxonases. J. Biol. Chem. 2006, 281 (11), 7649-7656.
61. Quirk, D. J.; Raines, R. T., His ... Asp Catalytic Dyad of Ribonuclease A: Histidine pKa Values in the Wild-Type, D121N, and D121A Enzymes. Biophys. J. 1999, 76 (3), 1571-1579.
62. MacBeath, G.; Hilvert, D., Hydrolytic Antibodies: Variations on a Theme. Chem. Biol. 1996, 3 (6), 433-445.
63. (a) Simón, L.; Goodman, J. M., Enzyme Catalysis by Hydrogen Bonds: The Balance between Transition State Binding and Substrate Binding in Oxyanion Holes. J. Org. Chem. 2010, 75 (6), 1831-1840; (b) Kamerlin, S. C. L.; Chu, Z. T.; Warshel, A., On Catalytic Preorganization in Oxyanion Holes: Highlighting the Problems with the Gas-Phase Modeling of Oxyanion Holes and Illustrating the Need for Complete Enzyme Models. J. Org. Chem. 2010, 75 (19), 6391-6401.
64. Menard, R.; Storer, A. C., Oxyanion Hole Interactions in Serine and Cysteine Proteases. Biol. Chem. H.-S. 1992, 373 (7), 393-400.
65. (a) Steitz, T. A.; Hendekson, R.; Blow, D. M., Structure of Crystalline α-Chymotrypsin: III. Crystallographic Studies of Substrates and Inhibitors Bound to the Active Site of α-Chymotrypsin. J. Mol. Biol. 1969, 46 (2), 337-348; (b) Gráf, L.; Jancsó, A.; Szilágyi, L.; Hegyi, G.; Pintér, K.; Náray-Szabó, G.; Hepp, J.; Medzihradszky, K.; Rutter, W. J., Electrostatic Complementarity within the Substrate-Binding Pocket of Trypsin. Proc. Natl. Acad. Sci. U. S. A. 1988, 85 (14), 4961-4965; (c) Navia, M. A.; McKeever, B. M.; Springer, J. P.; Lin, T. Y.; Williams, H. R.; Fluder, E. M.; Dorn, C. P.; Hoogsteen, K., Structure of Human Neutrophil Elastase in Complex with a Peptide Chloromethyl Ketone Inhibitor at 1.84-Å Resolution. Proc. Natl. Acad. Sci. U. S. A. 1989, 86 (1), 7-11.
66. Vella, F., Principles of Bioinorganic Chemistry: By S J Lippard and J M Berg. pp 411. University Science Books, Mill Valley, California. 1994. $30 ISBN 0-935702-73-3 (paper). Biochem. Mol. Biol. Edu. 1995, 23 (2), 115.
67. Duncan Krystyna, L.; Ulijn Rein, V., Short Peptides in Minimalistic Biocatalyst Design. Biocatalysis 2015, 1 (1), 67.
68. (a) Matsumoto, M.; Lee, S. J.; Gagné, M. R.; Waters, M. L., Cross-Strand Histidine–Aromatic Interactions Enhance Acyl-Transfer Rates in Beta-Hairpin Peptide Catalysts. Org. Biomol. Chem. 2014, 12 (43), 8711-8718; (b) Matsumoto, M.; Lee, S. J.; Waters, M. L.; Gagné, M. R., A Catalyst Selection Protocol that Identifies Biomimetic Motifs from β-Hairpin Libraries. J. Am. Chem. Soc. 2014, 136 (45), 15817-15820.
69. (a) Burton, A. J.; Thomson, A. R.; Dawson, W. M.; Brady, R. L.; Woolfson, D. N., Installing Hydrolytic Activity into a Completely de novo Protein Framework. Nat. Chem. 2016, 8, 837-844; (b) Zastrow, M. L.; Pecoraro, V. L., Influence of Active Site Location on Catalytic Activity in de novo-Designed Zinc Metalloenzymes. J. Am. Chem. Soc. 2013, 135 (15), 5895-5903; (c) Zastrow, M. L.; Peacock, A. F.; Stuckey, J. A.; Pecoraro, V. L., Hydrolytic Catalysis and Structural Stabilization in a Designed Metalloprotein. Nat. Chem. 2011, 4 (2), 118-123.
70. Wang, P. S. P.; Nguyen, J. B.; Schepartz, A., Design and High-Resolution Structure of a β3-Peptide Bundle Catalyst. J. Am. Chem. Soc. 2014, 136 (19), 6810-6813.
71. Zhang, Q.; He, X.; Han, A.; Tu, Q.; Fang, G.; Liu, J.; Wang, S.; Li, H., Artificial Hydrolase Based on Carbon Nanotubes Conjugated with Peptides. Nanoscale 2016, 8 (38), 16851-16856.
72. Zaramella, D.; Scrimin, P.; Prins, L. J., Self-Assembly of a Catalytic Multivalent Peptide–Nanoparticle Complex. J. Am. Chem. Soc. 2012, 134 (20), 8396-8399.
73. Poznik, M.; König, B., Cooperative Hydrolysis of Aryl Esters on Functionalized Membrane Surfaces and in Micellar Solutions. Org. Biomol. Chem. 2014, 12 (20), 3175-3180.
74. (a) Rufo, C. M.; Moroz, Y. S.; Moroz, O. V.; Stöhr, J.; Smith, T. A.; Hu, X.; DeGrado, W. F.; Korendovych, I. V., Short Peptides Self-Assemble to Produce Catalytic Amyloids. Nat. Chem. 2014, 6, 303-309; (b) Zhang, C.; Xue, X.; Luo, Q.; Li, Y.; Yang, K.; Zhuang, X.; Jiang, Y.; Zhang, J.; Liu, J.; Zou, G.; Liang, X.-J., Self-Assembled Peptide Nanofibers Designed as Biological Enzymes for Catalyzing Ester Hydrolysis. ACS Nano 2014, 8 (11), 11715-11723; (c) Wang, M.; Lv, Y.; Liu, X.; Qi, W.; Su, R.; He, Z., Enhancing the Activity of Peptide-Based Artificial Hydrolase with Catalytic Ser/His/Asp Triad and Molecular Imprinting. ACS Appl. Mater. Interfaces 2016, 8 (22), 14133-14141; (d) Wong, Y. M.; Masunaga, H.; Chuah, J. A.; Sudesh, K.; Numata, K., Enzyme-Mimic Peptide Assembly to Achieve Amidolytic Activity. Biomacromolecules 2016, 17 (10), 3375-3385.
75. Singh, N.; Conte, M. P.; Ulijn, R. V.; Miravet, J. F.; Escuder, B., Insight into the Esterase Like Activity Demonstrated by an Imidazole Appended Self-Assembling Hydrogelator. Chem. Commun. 2015, 51 (67), 13213-13216.
76. Zozulia, O.; Dolan, M. A.; Korendovych, I. V., Catalytic Peptide Assemblies. Chem. Soc. Rev. 2018, 47 (10), 3621-3639.
77. (a) Baldwin, R. L., The Search for Folding Intermediates and the Mechanism of Protein Folding. Annu. Rev. Biophys. 2008, 37, 1-21; (b) Bochicchio, B.; Tamburro, A. M., Polyproline II Structure in Proteins: Identification by Chiroptical Spectroscopies, Stability, and Functions. Chirality 2002, 14 (10), 782-792; (c) Craveur, P.; Joseph, A. P.; Poulain, P.; de Brevern, A. G.; Rebehmed, J., Cis-trans Isomerization of Omega Dihedrals in Proteins. Amino acids 2013, 45 (2), 279-289; (d) Cubellis, M. V.; Caillez, F.; Blundell, T. L.; Lovell, S. C., Properties of Polyproline II, a Secondary Structure Element Implicated in Protein-Protein Interactions. Proteins 2005, 58 (4), 880-892; (e) Holt, M. R.; Koffer, A., Cell Motility: Proline-Rich Proteins Promote Protrusions. Trends Biochem. Sci. 2001, 11 (1), 38-46; (f) Kay, B. K.; Williamson, M. P.; Sudol, M., The Importance of being Proline: The Interaction of Proline-Rich Motifs in Signaling Proteins with their Cognate Domains. FASEB J. 2000, 14 (2), 231-241; (g) Lu, K. P.; Finn, G.; Lee, T. H.; Nicholson, L. K., Prolyl cis-trans Isomerization as a Molecular Timer. Nat. Chem. Biol. 2007, 3 (10), 619-629; (h) Lummis, S. C.; Beene, D. L.; Lee, L. W.; Lester, H. A.; Broadhurst, R. W.; Dougherty, D. A., Cis-trans Isomerization at a Proline Opens the Pore of a Neurotransmitter-Gated Ion Channel. Nature 2005, 438 (7065), 248-252; (i) Rath, A.; Davidson, A. R.; Deber, C. M., The Structure of "Unstructured" Regions in Peptides and Proteins: Role of the Polyproline II helix in Protein Folding and Recognition. Biopolymers 2005, 80 (2-3), 179-185; (j) Stapley, B. J.; Creamer, T. P., A Survey of Left-Handed Polyproline II Helices. Protein Sci. 1999, 8 (3), 587-595; (k) Theillet, F. X.; Kalmar, L.; Tompa, P.; Han, K. H.; Selenko, P.; Dunker, A. K.; Daughdrill, G. W.; Uversky, V. N., The Alphabet of Intrinsic Disorder: I. Act Like a Pro: On the Abundance and Roles of Proline Residues in Intrinsically Disordered Proteins. Intrinsically Disord. Proteins 2013, 1 (1), e24360.
78. Shoulders, M. D.; Raines, R. T., Collagen Structure and Stability. Annu. Rev. Biochem. 2009, 78, 929-958.
79. Dobitz, S.; Aronoff, M. R.; Wennemers, H., Oligoprolines as Molecular Entities for Controlling Distance in Biological and Material Sciences. Acc. Chem. Res. 2017, 50 (10), 2420-2428.
80. Adzhubei, A. A.; Sternberg, M. J., Left-Handed Polyproline II Helices Commonly Occur in Globular Proteins. J. Mol. Biol. 1993, 229 (2), 472-493.
81. (a) Chiang, Y.-C.; Lin, Y.-J.; Horng, J.-C., Stereoelectronic Effects on the Transition Barrier of Polyproline Conformational Interconversion. Protein Sci. 2009, 18 (9), 1967-1977; (b) Erdmann, R. S.; Kümin, M.; Wennemers, H., (4R)- and (4S)-Azidoprolines-Conformation Directing Amino Acids and Sites for Functionalization. Chimia 2009, 63 (4), 197-200; (c) Horng, J.-C.; Raines, R. T., Stereoelectronic Effects on Polyproline Conformation. Protein Sci. 2006, 15 (1), 74-83; (d) Rabanal, F.; Ludevid, M. D.; Pons, M.; Giralt, E., CD of Proline-Rich Polypeptides: Application to the Study of the Repetitive Domain of Maize Glutelin-2. Biopolymers 1993, 33 (7), 1019-1028; (e) Zhang, A.; Guo, Y., High Stability of the Polyproline II Helix in Polypeptide Bottlebrushes. Chem.-Eur. J. 2008, 14 (29), 8939-8946; (f) Kuemin, M.; Engel, J.; Wennemers, H., Temperature-Induced Transition Between Polyproline I and II Helices: Quantitative Fitting of Hysteresis Effects. J. Pept. Sci. 2010, 16 (10), 596-600.
82. (a) Greenfield, N. J., Using Circular Dichroism Collected as a Function of Temperature to Determine the Thermodynamics of Protein Unfolding and Binding Interactions. Nat. Protoc. 2006, 1 (6), 2527-2535; (b) Greenfield, N. J., Using Circular Dichroism Spectra to Estimate Protein Secondary Structure. Nat. Protoc. 2006, 1 (6), 2876-2890.
83. (a) El-Baba, T. J.; Kim, D.; Rogers, D. B.; Khan, F. A.; Hales, D. A.; Russell, D. H.; Clemmer, D. E., Long-Lived Intermediates in a Cooperative Two-State Folding Transition. J. Phys. Chem. B 2016, 120 (47), 12040-12046; (b) Shi, L.; Holliday, A. E.; Bohrer, B. C.; Kim, D.; Servage, K. A.; Russell, D. H.; Clemmer, D. E., “Wet” Versus “Dry” Folding of Polyproline. J. Am. Soc. Mass Spectr. 2016, 27 (6), 1037-1047; (c) Shi, L.; Holliday, A. E.; Glover, M. S.; Ewing, M. A.; Russell, D. H.; Clemmer, D. E., Ion Mobility-Mass Spectrometry Reveals the Energetics of Intermediates that Guide Polyproline Folding. J. Am. Soc. Mass Spectr. 2016, 27 (1), 22-30; (d) Shi, L.; Holliday, A. E.; Khanal, N.; Russell, D. H.; Clemmer, D. E., Configurationally-Coupled Protonation of Polyproline-7. J. Am. Chem. Soc. 2015, 137 (27), 8680-8683; (e) Shi, L.; Holliday, A. E.; Shi, H.; Zhu, F.; Ewing, M. A.; Russell, D. H.; Clemmer, D. E., Characterizing Intermediates Along the Transition from Polyproline I to Polyproline II Using Ion Mobility Spectrometry-Mass Spectrometry. J. Am. Chem. Soc. 2014, 136 (36), 12702-12711.
84. (a) Chellgren, B. W.; Creamer, T. P., Short Sequences of Non-Proline Residues Can Adopt the Polyproline II Helical Conformation. Biochemistry 2004, 43 (19), 5864-5869; (b) Kelly, M. A.; Chellgren, B. W.; Rucker, A. L.; Troutman, J. M.; Fried, M. G.; Miller, A.-F.; Creamer, T. P., Host−Guest Study of Left-Handed Polyproline II Helix Formation. Biochemistry 2001, 40 (48), 14376-14383.
85. (a) Chellgren, B. W.; Creamer, T. P., Effects of H2O and D2O on Polyproline II Helical Structure. J. Am. Chem. Soc. 2004, 126 (45), 14734-14735; (b) Creamer, T. P.; Campbell, M. N., Determinants of the Polyproline II Helix from Modeling Studies. Adv. Protein Chem. 2002, 62, 263-282; (c) Mezei, M.; Fleming, P. J.; Srinivasan, R.; Rose, G. D., Polyproline II helix is the Preferred Conformation for Unfolded Polyalanine in Water. Proteins 2004, 55 (3), 502-507; (d) Pappu, R. V.; Rose, G. D., A Simple Model for Polyproline II Structure in Unfolded States of Alanine-Based Peptides. Protein Sci. 2002, 11 (10), 2437-2455; (e) Whittington, S. J.; Creamer, T. P., Salt Bridges Do Not Stabilize Polyproline II Helices. Biochemistry 2003, 42 (49), 14690-14695.
86. (a) Choudhary, A.; Gandla, D.; Krow, G. R.; Raines, R. T., Nature of Amide Carbonyl−Carbonyl Interactions in Proteins. J. Am. Chem. Soc. 2009, 131 (21), 7244-7246; (b) Kümin, M.; Sonntag, L.-S.; Wennemers, H., Azidoproline Containing Helices: Stabilization of the Polyproline II Structure by a Functionalizable Group. J. Am. Chem. Soc. 2007, 129 (3), 466-467; (c) Newberry, R. W.; Raines, R. T., The n→π* Interaction. Acc. Chem. Res. 2017, 50 (8), 1838-1846; (d) Hinderaker, M. P.; Raines, R. T., An Electronic Effect on Protein Structure. Protein Sci. 2003, 12 (6), 1188-1194.
87. Zondlo, N. J., Aromatic-Proline Interactions: Electronically Tunable CH/π Interactions. Acc. Chem. Res. 2013, 46 (4), 1039-1049.
88. Kuemin, M.; Schweizer, S.; Ochsenfeld, C.; Wennemers, H., Effects of Terminal Functional Groups on the Stability of the Polyproline II Structure: A Combined Experimental and Theoretical Study. J. Am. Chem. Soc. 2009, 131 (42), 15474-15482.
89. (a) Jarrold, M. F., Helices and Sheets in Vacuo. Phys. Chem. Chem. Phys. 2007, 9 (14), 1659-1671; (b) Sali, D.; Bycroft, M.; Fersht, A. R., Stabilization of Protein Structure by Interaction of Alpha-Helix Dipole with a Charged Side Chain. Nature 1988, 335 (6192), 740-743.
90. Hamley, I. W.; Castelletto, V.; Dehsorkhi, A.; Torras, J.; Aleman, C.; Portnaya, I.; Danino, D., The Conformation and Aggregation of Proline-Rich Surfactant-Like Peptides. J. Phys. Chem. B 2018, 122 (6), 1826-1835.
91. Traub, W.; Shmueli, U., Structure of Poly-L-Proline I. Nature 1963, 198, 1165.
92. (a) Xu, G. G.; Etzkorn, F. A., Pin1 as an Anticancer Drug Target. Drug news perspect. 2009, 22 (7), 399-407; (b) Wulf, G.; Garg, P.; Liou, Y.-C.; Iglehart, D.; Lu, K. P., Modeling Breast Cancer in vivo and ex vivo Reveals an Essential Role of Pin1 in Tumorigenesis. EMBO J. 2004, 23 (16), 3397-3407; (c) Lu, K. P., Prolyl Isomerase Pin1 as a Molecular Target for Cancer Diagnostics and Therapeutics. Cancer cell 2003, 4 (3), 175-180.
93. Sudol, M., Structure and Function of the WW Domain. Prog. Biophys. Mol. Biol. 1996, 65 (1-2), 113-132.
94. Uchida, T.; Takamiya, M.; Takahashi, M.; Miyashita, H.; Ikeda, H.; Terada, T.; Matsuo, Y.; Shirouzu, M.; Yokoyama, S.; Fujimori, F.; Hunter, T., Pin1 and Par14 Peptidyl Prolyl Isomerase Inhibitors Block Cell Proliferation. Chem. Biol. 2003, 10 (1), 15-24.
95. Fanghänel, J.; Akiyama, H.; Uchida, C.; Uchida, T., Comparative Analysis of Enzyme Activities and mRNA levels of Peptidyl Prolyl cis/trans Isomerases in Various Organs of Wild Type and Pin1−/− Mice. FEBS Lett. 2006, 580 (13), 3237-3245.
96. Ryo, A.; Uemura, H.; Ishiguro, H.; Saitoh, T.; Yamaguchi, A.; Perrem, K.; Kubota, Y.; Lu, K. P.; Aoki, I., Stable Suppression of Tumorigenicity by Pin1-Targeted RNA Interference in Prostate Cancer. Clin. Cancer Res. 2005, 11 (20), 7523-7531.
97. Hennig, L.; Christner, C.; Kipping, M.; Schelbert, B.; Rucknagel, K. P.; Grabley, S.; Kullertz, G.; Fischer, G., Selective Inactivation of Parvulin-Like Peptidyl-Prolyl cis/trans Isomerases by Juglone. Biochemistry 1998, 37 (17), 5953-5960.
98. Tatara, Y.; Lin, Y.-C.; Bamba, Y.; Mori, T.; Uchida, T., Dipentamethylene Thiuram Monosulfide is a Novel Inhibitor of Pin1. 2009, 384, 394-398.
99. Wildemann, D.; Erdmann, F.; Alvarez, B. H.; Stoller, G.; Zhou, X. Z.; Fanghänel, J.; Schutkowski, M.; Lu, K. P.; Fischer, G., Nanomolar Inhibitors of the Peptidyl Prolyl cis/trans Isomerase Pin1 from Combinatorial Peptide Libraries. J. Med. Chem. 2006, 49 (7), 2147-2150.
100. (a) Duncan, K. E.; Dempsey, B. R.; Killip, L. E.; Adams, J.; Bailey, M. L.; Lajoie, G. A.; Litchfield, D. W.; Brandl, C. J.; Shaw, G. S.; Shilton, B. H., Discovery and Characterization of a Nonphosphorylated Cyclic Peptide Inhibitor of the Peptidyl-Prolyl Isomerase, Pin1. J. Med. Chem. 2011, 54 (11), 3854-3865; (b) Liu, T.; Liu, Y.; Kao, H.-Y.; Pei, D., Membrane Permeable Cyclic Peptidyl Inhibitors against Human Peptidylprolyl Isomerase Pin1. J. Med. Chem. 2010, 53 (6), 2494-2501; (c) Reineke, E. L.; Lam, M.; Liu, Q.; Liu, Y.; Stanya, K. J.; Chang, K. S.; Means, A. R.; Kao, H. Y., Degradation of the Tumor Suppressor PML by Pin1 Contributes to the Cancer Phenotype of Breast Cancer MDA-MB-231 cells. Mol. Cell. Biol. 2008, 28 (3), 997-1006; (d) Stanya, K. J.; Liu, Y.; Means, A. R.; Kao, H.-Y., Cdk2 and Pin1 Negatively Regulate the Transcriptional Corepressor SMRT. J. Cell. Biol. 2008, 183 (1), 49-61.
101. Wang, X. J.; Xu, B.; Mullins, A. B.; Neiler, F. K.; Etzkorn, F. A., Conformationally Locked Isostere of PhosphoSer−cis-Pro Inhibits Pin1 23-Fold Better than PhosphoSer−trans-Pro Isostere. J. Am. Chem. Soc. 2004, 126 (47), 15533-15542.
102. Xu, G. G.; Zhang, Y.; Mercedes-Camacho, A. Y.; Etzkorn, F. A., A Reduced-Amide Inhibitor of Pin1 Binds in a Conformation Resembling a Twisted-Amide Transition State. Biochemistry 2011, 50 (44), 9545-9550.
103. Shirakami, Y.; Shimizu, M.; Moriwaki, H., Cancer Chemoprevention with Green Tea Catechins: from Bench to Bed. Curr. Drug Targets 2012, 13 (14), 1842-1857.
104. (a) Namanja, A. T.; Wang, X. J.; Xu, B.; Mercedes-Camacho, A. Y.; Wilson, K. A.; Etzkorn, F. A.; Peng, J. W., Stereospecific Gating of Functional Motions in Pin1. 2011, 108 (30), 12289-12294; (b) Namanja, A. T.; Wang, X. J.; Xu, B.; Mercedes-Camacho, A. Y.; Wilson, B. D.; Wilson, K. A.; Etzkorn, F. A.; Peng, J. W., Toward Flexibility-Activity Relationships by NMR Spectroscopy: Dynamics of Pin1 Ligands. J. Am. Chem. Soc. 2010, 132 (16), 5607-5609.
105. Zhang, Y.; Daum, S.; Wildemann, D.; Zhou, X. Z.; Verdecia, M. A.; Bowman, M. E.; Lücke, C.; Hunter, T.; Lu, K.-P.; Fischer, G.; Noel, J. P., Structural Basis for High-Affinity Peptide Inhibition of Human Pin1. ACS Chem. Biol. 2007, 2 (5), 320-328.
106. Lu, P. J.; Zhou, X. Z.; Liou, Y. C.; Noel, J. P.; Lu, K. P., Critical Role of WW Domain Phosphorylation in Regulating Phosphoserine Binding Activity and Pin1 Function. J. Biol. Chem. 2002, 277 (4), 2381-2384.
107. Smet, C.; Duckert, J.-F.; Wieruszeski, J.-M.; Landrieu, I.; Buée, L.; Lippens, G.; Déprez, B., Control of Protein−Protein Interactions: Structure-Based Discovery of Low Molecular Weight Inhibitors of the Interactions between Pin1 WW Domain and Phosphopeptides. J. Med. Chem. 2005, 48 (15), 4815-4823.
108. Brister, M. A.; Pandey, A. K.; Bielska, A. A.; Zondlo, N. J., OGlcNAcylation and Phosphorylation Have Opposing Structural Effects in Tau: Phosphothreonine Induces Particular Conformational Order. J. Am. Chem. Soc. 2014, 136 (10), 3803-3816.
109. Verdecia, M. A.; Bowman, M. E.; Lu, K. P.; Hunter, T.; Noel, J. P., Structural Basis for Phosphoserine-Proline Recognition by Group IV WW Domains. Nat. Struct. Biol. 2000, 7 (8), 639-643.
110. Pandey, A. K.; Naduthambi, D.; Thomas, K. M.; Zondlo, N. J., Proline Editing: A General and Practical Approach to the Synthesis of Functionally and Structurally Diverse Peptides. Analysis of Steric versus Stereoelectronic Effects of 4-Substituted Prolines on Conformation within Peptides. J. Am. Chem. Soc. 2013, 135 (11), 4333-4363.
111. Tang, H.-C.; Lin, Y.-J.; Horng, J.-C., Modulating the Folding Stability and Ligand Binding Affinity of Pin1 WW Domain by Proline Ring Puckering. Proteins 2014, 82 (1), 67-76.
112. Wu, S.-P.; Liu, S.-R., A New Water-Soluble Fluorescent Cu(II) Chemosensor Based on Tetrapeptide Histidyl-Glycyl-Glycyl-Glycine (HGGG). Sensor. Actuat. B Chem. 2009, 141 (1), 187-191.
113. (a) Lakowicz, J., Principles of Fluorescence Spectroscopy. 2006; Vol. 1; (b) Patel, H. V.; Vyas, A. A.; Vyas, K. A.; Liu, Y. S.; Chiang, C. M.; Chi, L. M.; Wu, W., Heparin and Heparan Sulfate Bind to Snake Cardiotoxin. Sulfated Oligosaccharides as a Potential Target for Cardiotoxin Action. J. Biol. Chem. 1997, 272 (3), 1484-1492.
114. Lee, W.; Tonelli, M.; Markley, J. L., NMRFAM-SPARKY: Enhanced Software for Biomolecular NMR Spectroscopy. Bioinformatics (Oxford, England) 2015, 31 (8), 1325-1327.
115. (a) Fernandez-Ballester, G.; Blanes-Mira, C.; Serrano, L., The Tryptophan Switch: Changing Ligand-Binding Specificity from Type I to Type II in SH3 Domains. J. Mol. Biol. 2004, 335 (2), 619-629; (b) Lim, W. A.; Richards, F. M., Critical Residues in an SH3 Domain from Sem-5 Suggest a Mechanism for Proline-Rich Peptide Recognition. Nat. Struct. Biol. 1994, 1, 221; (c) Musacchio, A.; Saraste, M.; Wilmanns, M., High-Resolution Crystal Structures of Tyrosine Kinase SH3 Domains Complexed with Proline-Rich Peptides. Nat. Struct. Biol. 1994, 1 (8), 546-551.
116. Díaz-Oltra, S.; Berdugo, C.; Miravet, J. F.; Escuder, B., Study of the Effect of Polymorphism on the Self-Assembly and Catalytic Performance of an L-Proline Based Molecular Hydrogelator. New J. Chem. 2015, 39 (5), 3785-3791.
117. (a) Zhang, C.; Shafi, R.; Lampel, A.; MacPherson, D.; Pappas, C. G.; Narang, V.; Wang, T.; Maldarelli, C.; Ulijn, R. V., Switchable Hydrolase Based on Reversible Formation of Supramolecular Catalytic Site Using a Self-Assembling Peptide. Angew. Chem. Int. Ed. Engl. 2017, 56 (46), 14511-14515; (b) Maeda, Y.; Javid, N.; Duncan, K.; Birchall, L.; Gibson, K. F.; Cannon, D.; Kanetsuki, Y.; Knapp, C.; Tuttle, T.; Ulijn, R. V.; Matsui, H., Discovery of Catalytic Phages by Biocatalytic Self-Assembly. J. Am. Chem. Soc. 2014, 136 (45), 15893-15896.
118. Al-Garawi, Z. S.; McIntosh, B. A.; Neill-Hall, D.; Hatimy, A. A.; Sweet, S. M.; Bagley, M. C.; Serpell, L. C., The Amyloid Architecture Provides A Scaffold for Enzyme-Like Catalysts. Nanoscale 2017, 9 (30), 10773-10783.
119. Schneider, J. P.; Pochan, D. J.; Ozbas, B.; Rajagopal, K.; Pakstis, L.; Kretsinger, J., Responsive Hydrogels from the Intramolecular Folding and Self-Assembly of a Designed Peptide. J. Am. Chem. Soc. 2002, 124 (50), 15030-15037.
120. Hung, P.-Y.; Chen, Y.-H.; Huang, K.-Y.; Yu, C.-C.; Horng, J.-C., Design of Polyproline-Based Catalysts for Ester Hydrolysis. ACS Omega 2017, 2 (9), 5574-5581.
121. Nagy-Smith, K.; Moore, E.; Schneider, J.; Tycko, R., Molecular Structure of Monomorphic Peptide Fibrils within a Kinetically Trapped Hydrogel Network. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (32), 9816-9821.
122. Sarroukh, R.; Goormaghtigh, E.; Ruysschaert, J. M.; Raussens, V., ATR-FTIR: A "Rejuvenated" Tool to Investigate Amyloid Proteins. BBA Biomembranes 2013, 1828 (10), 2328-38.