簡易檢索 / 詳目顯示

研究生: 呂明諺
Lu, Ming-Yen
論文名稱: 半導體硫化鋅奈米結構之合成、結構鑑定及特性之研究
Semiconducting ZnS-based Nanostructures: Synthesis, Characterization, and Properties
指導教授: 陳力俊
Chen, Lih-Juann
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 107
中文關鍵詞: 硫化鋅奈米結構
外文關鍵詞: Zinc Sulfide, nanostructures
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Synthesis, characterizations, and physical properties of ZnS-based nanostructures have been investigated. Zinc sulfide has attracted intensive research effort in recent years, due to its unique properties and versatile applications. The design and control over size and morphology of ZnS nanostructures is of current interest. It is important to exploit both the wiring and device elements in architectures for functional nanosystems properties and new phenomena arising from heterostructures. The possible advanced applications of these structures are also proposed.
    Self-assembled ZnS nanocombs with ZnO sheath have been grown using a thermal evaporation under controlled conditions. The growth directions of ZnS stems and nanotooth were analyzed to be along [2-1-10] and [0001], respectively. The asymmetric growth of ZnS tooth is due to the polar surface of wurtzite materials, the tooth are grown only at (0001) Zn polar surface, which is relatively active, compared to (0001) S polar surface. ZnO sheath was formed during the cooling-down stage with the residual O2. The non-metal-catalyst approach has the advantage of producing high purity nanostructures. These nanoteeth arrays might find applications in one-dimensional photonic crystals and the investigation of nonlinear collective effects.
    The growth of CoxZn1-xS nanowires (NWs) was carried out using a one-step thermal evaporation method. The doping levels of cobalt in ZnS nanowires can be modulated by different amount of doping sources. Both Co signals taken by EDS and planar defects in nanowires imply that the Co ions incorporate within the ZnS nanowires by means of systematical substitution for Zn ions. The magnetism of the nanowires was maintained at room temperature and the saturated magnetization increased with cobalt contents. Electron transport measurements of single nanowire devices showed not only linear relationship, which represents Ohmic contacts of nanowire devices, but also tunable conductivities by doping concentration.
    Quasi-vertical ZnS nanostructures doped with Ga (Ga-doped ZnS nanowalls) have been synthesized in high yield from mixed powders in the vacuum furnace. Ga-doped ZnS nanowalls were grown vertically on the substrate with the size in the range of several microns and the thickness down to ~15 nm and have very rough edges. Due to high surface area and distinctive morphology of Ga-doped ZnS nanowalls, the photocatalytic activity and the photoresponse show superior properties. The increasing conductivities of Ga-doped ZnS MSM Schottky photodetectors under light illumination are owing to the presence of oxygen on Ga-doped ZnS surface and the lowering of Schottky barrier height.
    Vertically aligned ZnO-ZnS heterojunction nanowire arrays were synthesized for the first time by thermal evaporation in a tube furnace under controlled conditions. Both ZnO and ZnS are of wurtize structure, and the axial heterojunctions are formed by epitaxial growth of ZnO on ZnS with an orientation relationship of [0001]ZnO // [0001]ZnS. Vertical ZnS NW arrays have been obtained by selectively etching of ZnO-ZnS NW arrays. Cathodeluminescence measurements of ZnO-ZnS NW arrays and ZnS NW arrays show emissions at 509 and 547 nm, respectively. Both types of aligned NW arrays have been applied to convert mechanical energy into electricity when they are deflected by a conductive AFM tip in contact mode. The received results are explained by the mechanism proposed for nanogenerator.


    Contents Contents …………………………………………………………………I Acknowledgements ………………………………………………….....V List of Acronyms and Abbreviations ………………………………..VII Abstract ...………………………………………………………..….....IX Part I Introduction Chapter 1 Nanotechnology 1.1 Overview …………………………………………………………….1 1.2 Nanomaterials 1.2.1 One-Dimensional Nanomaterials ...……………………….. 5 1.2.2 Two-Dimensional Nanomaterials ...………………………. 6 1.3 Growth Mechanism of Nanostructures 1.3.1 Vapor-Liquid-Solid (VLS) Growth …...……………………7 1.3.2 Vapor-Solid (VS) Growth …………...……………………..9 Chapter 2 Wurzite Semiconductor : ZnS 2.1 Wurtize Structure ...…………………………………………………11 2.2 Piezoelectric Materials ……………………………………………...11 2.3 ZnS: Properties and Applications …………………………………..13 2.4 Doping of ZnS ...……………………………………………………15 Part II Methods Chapter 3 Experimental Procedures 3.1 Substrate Preparation ………………………………………………17 3.2 Vacuum Furnace Setup …………………………………………….17 3.3 Scanning Electron Microscope (SEM) Observation ……………….18 3.4 X-Ray Diffractometry (XRD) ……………………………………...18 3.5 Sample Preparations for Transmission Electron Microscopy (TEM) Observation 3.5.1 Sample Preparation of Dispersed Nanostructures ………..…19 3.5.2 Cross-sectional Specimen Preparation ……………………...19 3.6 Transmission Electron Microscope (TEM) Observation …………..20 3.7 Energy Dispersive Spectrometer (EDS) Analysis …………………20 3.8 Cathodoluminescence (CL) Measurements ………………………..22 3.9 Photocatalytic Activity Measurements …………………………….22 3.10 Current-Voltage (I-V) Measurements …………………………….22 3.11 Piezoelectric Property Measurements …………………………....22 Part III Results and Discussion Chapter 4 Growth of ZnS Nanocombs with ZnO Sheath by Thermal Evaporation 4.1 Motivation ………………………………………………………….24 4.2 ExperimentalProcedures…………...………………………………..25 4.3 Results and Discussion……..……….………………………………26 4.4 Summary and Conclusions………………..………………………...31 Chapter 5 Tunable Electric and Magnetic Properties of CoxZn1-xS Nanowires 5.1 Motivation ………………………………………………………….33 5.2 Experimental Procedures…………...……………………………….35 5.3 Results and Discussion…………………………...…………………36 5.4 Summary and Conclusions………………......……………………...42 Chapter 6 Ga-doped ZnS Nanowalls: Synthesis, Characterization, Photocatalytic Activity, and Photoconductivity 6.1 Motivation ………………………………………………………….44 6.2 Experimental Procedures………………………………………..…..45 6.3 Results and Discussion………………...…………………………....47 6.4 Summary and Conclusions…………………..……………...………58 Chapter 7 ZnO-ZnS Heterojunction Nanowire Arrays and ZnS Nanowire Arrays for Electricity Generation 7.1 Motivation ………………………………………………………….60 7.2 Experimental Procedures………………………………..…………..61 7.3 Results and Discussion……………………………….………..……63 7.4 Summary and Conclusions…………………………………..……...73 PART Ⅳ Future Prospects Summary, and Conclusions Chapter 8 Future Prospects 8.1 Doped ZnS Nanostructures for Nanoelectric Devices ……………...75 8.2 Growth of Homo- and Heterojunction Branched Nanowires ………75 8.3 Nanowire Arrays for Advanced Device Applications ………………77 Chapter 9 Summary and Conclusions 9.1 Growth of ZnS Nanocombs with ZnO Sheath by Thermal Evaporation …………………………………………………………79 9.2 Tunable Electric and Magnetic Properties of CoxZn1-xS Nanowires ………………………………………………………………79 9.3 Ga-doped ZnS Nanowalls: Synthesis, Characterization, Photocatalytic Activity, and Photoconductivity ………………………………...….80 9.4 ZnO-ZnS Heterojunction Nanowire Arrays and ZnS Nanowire Arrays for Electricity Generation …………………………………………..81 References ……………………………………………………………...82 Publication List ………………………………………………………104

    [1] X. S. Fang, C. H. Ye, L. D. Zhang, Y. H. Wang, and Y. C. Wu, “Temperature-Controlled Catalytic Growth of ZnS Nanostructures by the Evaporation of ZnS Nanopowders,” Adv. Func. Mater. 15, pp. 63-68 (2005).
    [2] T. Gao, and T. Wang, “Catalyst-Assisted Vapor-Liquid-Solid Growth of Single-Crystal CdS Nanobelts and Their Luminescence Properties,” J. Phys. Chem. B 108, pp. 10045-10049 (2004).
    [3] C. Ma, and Z. L. Wang, “Road Map for the Controlled Synthesis of CdSe Nanowires, Nanobelts, and Nanosaws—A Step Towards Nanomanufacturing,” Adv. Mater. 17, pp. 2635-2639 (2005).
    [4] X.Y. Kong, and Z.L. Wang, “Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts,” Nano Lett. 3, pp. 1625-1631 (2003).
    [5] W.L. Hughes, and Z.L. Wang, “Nanobelts as nanocantilevers,” Appl. Phys. Lett. 82, pp. 2886-2888 (2003).
    [6] G. Y. Chen, T. Thundat, E. A. Wachter, and R. J. Warmack, “Adsorption-Induced Surface Stress and Its Effects on Resonance Frequency of Microcantilevers” J. Appl. Phys. 77, pp. 3618-3622 (1995).
    [7] J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, pp. 316-318 (2000).
    [8] G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty, and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. USA 98, pp. 1560-1564 (2001).
    [9] D. Moore, C. Ronning, C. Ma, and Z. L. Wang, “Wurtzite ZnS nanosaws produced by polar surfaces,” Chem. Phys. Letts. 385, pp. 8-11 (2004).
    [10] Z. L. Wang, and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science 312, pp. 242-246 (2006).
    [11] Z. L. Wang, “Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics” Adv. Func. Mater. 18, pp. 3553-3567 (2008).
    [12] T. B. Massalaki, “Binary Alloy Phase Diagrams, 2nd ed.,” The Materials Information Society, Cleveland, OH (1990).
    [13]T. Yamamoto, S. Kishimoto, and S. Iida, “Control of Valence States for ZnS by Triple-codoping Method,” Phys. B 308-310, pp. 916-919 (2001).
    [14] P. Calandra, M. Goffredi, and V. T. Liveri, “Study of the Growth of ZnS Nanoparticles in Water/AOT/n-heptane Microemulsions by UV-absorption Spectroscopy,” Colloids Surf. A 160, pp. 9-13(1999).
    [15] M. Bredol, and J. Merichi, “ZnS Precipitation: Morphology Control,” J. Mater. Sci. 33, pp. 471-476 (1998).
    [16] Y. C. Zhu, Y. Bando, D. F. Xue, and D. Golberg, “Oriented Assemblies of ZnS One-Dimensional Nanostructures,” Adv. Mater. 16, pp. 831-834 (2004).
    [17] C. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber, “Synthesis of CdS and ZnS Nanowires Using Single-Source Molecular Precursors,” J. Am. Chem. Soc. 125, pp. 11498-11499 (2003).
    [18] Z. W. Wang, L. L. Daemen, Y. S. Zhao, C. S. Zha, R. T. Downs, X. D. Wang, Z. L. Wang, and R. J. Hemley, “Morphology-tuned Wurtzite-type ZnS Nanobelts,” Nat. Mater. 4, pp. 922-927 (2005).
    [19] W. Chen, Z. G. Wang, Z. J. Lin, and L. Y. Lin, “Absorption and Luminescence of the Surface States in ZnS Nanoparticles,” J. Appl. Phys. 82, pp. 3111-3115 (1997).
    [20] C. Ma, D. Moore, J. Li, and Z. L. Wang, “Nanobelts, Nanocombs, and Nanowindmills of Wurtzite ZnS,” Adv. Mater. 15, pp. 228-231 (2003).
    [21] M. Y. Lu, P. Y. Su, Y. L. Chueh, L. J. Chen, and L. J. Chou, “Growth of ZnS Nanocombs with ZnO Sheath by Thermal Evaporation,” Appl. Sur. Sci. 244, pp. 96-100 (2005).
    [22] Y. C. Zhu, Y. Bando, D. F. Xue, and D. Golberg, “Nanocable-Aligned ZnS Tetrapod Nanocrystals,” J. Am. Chem. Soc. 125, pp. 16196-16197 (2003).
    [23] D. Moore, C. Ronning, C. Ma, and Z. L. Wang, “Wurtzite ZnS Nanosaws Produced by Polar Surfaces,” Chem. Phys. Lett. 385, pp. 8-11 (2004).
    [24] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and Electrical Transport in Silicon Nanowires,” J. Phys. Chem. B 104, pp. 5213-5216 (2000).
    [25] A. Pan, H. Yang, R. Liu, R. Yu, B. Zou, and Z. L. Wang, “Color-Tunable Photoluminescence of Alloyed CdSxSe1-x Nanobelts,” J. Am. Chem. Soc. 127, pp. 15692-15693 (2005).
    [26] H. J. Choi, H. K. Seong, J. Chang, K. I. Lee, Y. J. Park, J. J. Kim, S. K. Lee, R. He, T. Kuykendall, and P. Yang, “Single-Crystalline Diluted Magnetic Semiconductor GaN:Mn Nanowires,” Adv. Mater. 17, 1351-1356 (2005).
    [27] G. C. Lisensky, M. N. Patel, and M. L. Reich, “Experiments with Glow-in-the-Dark Toys: Kinetics of Doped ZnS Phosphorescence,” J Chem. Edu. 73, pp. 1048-1051 (1996).
    [28] B. C. Cheng, and Z. G. Wang, “Synthesis and Optical Properties of Europium-Doped ZnS: Long-Lasting Phosphorescence from Aligned Nanowires,” Adv. Func. Mater. 15, pp. 1883-1890 (2005).
    [29] A. A. Khosravi, M. Kundu, L. Jatwa, S. K. Deshpande, U. A. Bhagwat, M. Sastry, and S. K. Kulkarni, “Green Luminescence from Copper Doped Zinc Sulphide Quantum Particles,” Appl. Phys. Lett. 67, pp. 2702-2704 (1995).
    [30] J. P. Ge, J. Wang, H. X. Zhang, X. Wang, Q. Peng, and Y. D. Li, “Halide-Transport Chemical Vapor Deposition of Luminescent ZnS:Mn2+ One-Dimensional Nanostructures,” Adv. Func. Mater. 15, pp. 303-308 (2005).
    [31] E. Y. Abiko, N. Nakayama, K. Akimoto, and T. Yao, “Difference in Luminescence Properties between Sm Doped ZnS and Eu Doped ZnS,” phys. stat. sol. (b) 229, pp. 339–342 (2002).
    [32] F. K. Manzoor, S. R. Vadera, N. Kumara, and T. R. N. Kutty, “Multicolor Electroluminescent Devices Using Doped ZnS Nanocrystals,” Appl. Phys. Lett. 84, pp. 284-286 (2004).
    [33] Y. Q. Chang, D. P. Yu, H. Z. Zhang, Z. Wang, Y. Long, and W. J. Qiang, “Fabrication and Characterization of Single-crystalline Nanostructured Zn1−xMnxS,” Nanotechnology 17, pp. 1999–2003(2006).
    [34] G. D. Yuan, W. J. Zhang, W. F. Zhang, X. Fan, I. Bello, C. S. Lee, and S. T. Lee, “p-type Conduction in Nitrogen-doped ZnS Nanoribbons,”
    Appl. Phys. Lett. 93, pp. 213102-1-3 (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE