簡易檢索 / 詳目顯示

研究生: 蕭偉銘
論文名稱: 脈衝線性電感式耦合電漿源研製與實驗量測分析
Experimental Analysis of a Pulsed Inductively Coupled Linear Plasma Source
指導教授: 柳克強
口試委員: 李志浩
張家豪
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 92
中文關鍵詞: 脈衝線性電漿電感式耦合電漿源脈衝電漿
外文關鍵詞: pulsed linear plasma, inductively, pulse plasma
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究目的,在於研製脈衝線性電感式耦合電漿源,並對此線性電漿源系統進行各項電漿參數的量測,由隨時變之電漿特性參數分析脈衝線性電漿源的物理機制與特性。
    本研究成功研製出脈衝線性電感式耦合電漿源,並修改與使用脈衝電漿源的量測系統。以蘭牟爾探針量測在不同操作條件下的隨時變電漿特性參數,使用射頻阻抗計量測脈衝電漿之射頻電性。
    由射頻阻抗計量測結果顯示,射頻電壓中,隨工作比例、脈衝頻率增加沒有明顯關係,隨壓力增加有明顯的下降關係;射頻電流中,隨脈衝頻率改變沒有明顯變化趨勢,隨著工作比例、壓力的增加而下降。在脈衝開的初期,阻抗有一個峰值,是因為剛開始時是由電容式耦合轉變到電感式耦合的關係。
    蘭牟爾探針量測結果顯示,脈衝電漿密度隨與天線距離增加時會有先增後減的現象,靠近天線會比較低是因為擴散損失(diffusion loss)較多,而脈衝電漿密度在工作比例為70%時有最大值,為9.24 × 10^10 cm^-3,其平均電漿密度為7.87 × 10^10 cm^-3。另一方面,脈衝電漿在相同的吸收功率下,有較高的平均電漿密度(連率電漿:吸收功率為192 W,電漿密度為6 × 10^10 cm^-3)。
    在電子溫度方面,脈衝開時有一個較大的峰值,是因為脈衝開的瞬間,功率大幅增加的影響,電子溫度在靠近天線的位置有最大值,隨著與天線距離增加而減少,這樣的趨勢與文獻、預期符合,但電子溫度的值卻過大,比較不合理,是因為射頻信號干擾影響,使分析產生誤差。


    The purpose of this study is to develop a pulsed inductively coupled linear plasma source, and analyze the temporal and spatial behavior of plasma characteristic parameters. In this research, we has successfully developed a pulsed inductively coupled linear plasma source. We modify and use measurement systems for a pulsed plasma source. We measure the temporal and spatial behavior of plasma parameters by using Langmuir probe and measure the rf parameters by using rf impedance meter (VI probe).
    In the results of rf impedance meter measurement, the magnitude of rf voltage didn't change significantly as the duty cycle or pulsed frequency increases, rf voltage decreases as the pressure increases. The magnitude of rf current didn't change significantly as pulsed frequency increases, rf current decreases as the duty cycle or pressure increases. A spike of the real part rf impedance due to the transition from capacitive to inductive coupling is observed in the beginning of the modulation pulse.
    In the results of Langmuir probe measurement, plasma density first increases and then decreases if the probe is moved away from the antenna, because there are more diffusion loss near the linear antenna. In the results, the plasma density at pulse mode is higher than that at continuous wave mode when they are operated at the same average power. In pulse mode, the highest average plasma density is 7.87 × 1010 cm-3 (10 mtorr, 70%, 10 kHz ). A spike of electron temperature due to the power increases substantially in the beginning of the modulation pulse. The magnitude of electron temperature has maximum, the electron temperature decreases if the probe is moved away from the antenna. Because there are interference of rf fieid in rf plasma, it make more error in electron temperature.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 第一章 前言 1 1.1研究背景 1 1.1研究動機 2 1.2研究目的 3 第二章 文獻回顧 4 2.1線性電漿源 4 2.2脈衝調變式電漿源 7 2.3改良式探針之量測[17, 19] 11 2.4射頻阻抗計之量測[20] 13 2.5結論 15 第三章 基本原理 16 3.1電感式耦合電漿源基本原理[22] 16 3.2脈衝調變式原理 17 3.3阻抗匹配的基本原理[21] 18 3.4蘭牟爾探針量測分析[13, 23] 19 3.5射頻阻抗計原理[20] 23 3.5.1射頻電壓/電流感測器 23 3.5.2射頻參數計算 25 第四章 實驗設備與研究方法 26 4.1線性電感式耦合電漿源系統介紹 26 4.1.1射頻功率供應系統 27 4.1.2同軸線性天線 27 4.1.3電漿腔體 27 4.1.4真空與供氣系統 28 4.1.5冷卻水系統 29 4.2匹配網路調整 29 4.3靜電探針量測系統 30 4.3.1系統設置 31 4.3.2量測流程[13] 33 4.4蘭牟爾探針之補償[19] 38 4.5射頻阻抗計之量測[20] 40 4.6脈衝線性電漿源的研製 42 4.6.1線性天線製作 42 4.6.2電路盒製作 43 第五章 結果與討論 45 5.1射頻參數隨輸入功率變化情形 46 5.2脈衝電漿密度隨時間變化情形 59 5.3電子溫度隨時間變化情形 64 5.4討論 66 第六章 結論 67 參考文獻 70 附錄A Global model[24] 73 附錄B 射頻參數在不同操作條件隨時間變化圖 76 附錄C 在脈衝頻率為1 kHz下,不同探針偏壓之電流波形 83 附錄D 脈衝電漿密度在不同位置不同操作條件隨時間變化 84

    [1] K. N. Kim, et al., "Effect of dual frequency on the plasma characteristics in an internal linear inductively coupled plasma source," Applied Physics Letters, vol. 89, Dec 18 2006.
    [2] G. H. Gweon, et al., "Investigation of the plasma uniformity in an internal linear antenna-type inductively coupled plasma source by applying dual frequency," Vacuum, vol. 84, pp. 823-827, Feb 4 2010.
    [3] S. Ashida, et al., "Spatially averaged (Global) Model of Time Modulated High-Density Argon Plasmas " Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 13, pp. 2498-2507, Sep-Oct 1995.
    [4] M. V. Malyshev, et al., "Dynamics of pulsed-power chlorine plasmas," Journal of Applied Physics, vol. 86, pp. 4813-4820, Nov 1999.
    [5] Q. Cheng, et al., "Temperature-Dependent Properties of nc-Si Thin Films Synthesized in Low-Pressure, Thermally Nonequilibrium, High-Density Inductively Coupled Plasmas," Journal of Physical Chemistry C, vol. 113, pp. 14759-14764, Aug 20 2009.
    [6] S. Ashida, et al., "Measurements of pulsed-power modulated argon plasmas in an inductively coupled plasma source," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 14, pp. 391-397, Mar-Apr 1996.
    [7] J. H. Lim, et al., "Study of Internal Linear Inductively Coupled Plasma Source for Ultra Large-Scale Flat Panel Display Processing," Plasma Chemistry and Plasma Processing, vol. 29, pp. 251-259, Aug 2009.
    [8] H. B. Kim, et al., "Effect of capacitive to inductive coupling transition in multiple linear U-type antenna on silicon thin film deposition from pure SiH4 discharges," Journal of Vacuum Science & Technology A, vol. 26, pp. 842-846, Jul-Aug 2008.
    [9] S. Banna, et al., "Pulsed high-density plasmas for advanced dry etching processes," Journal of Vacuum Science & Technology A, vol. 30, Jul 2012.
    [10] Y. W. Kim, et al., "Time-resolved plasma measurement in a high-power pulsed ICP source for large area," Surface & Coatings Technology, vol. 186, pp. 161-164, Aug 2 2004.
    [11] N. Kang, et al., "Modeling and experimental study of pulse modulated ICP discharge: production of Ar highly excited states," Plasma Sources Science & Technology, vol. 20, Jun 2011.
    [12] E. Takahashi, et al., "Large-area and high-speed deposition of microcrystalline silicon film by inductive coupled plasma using internal low-inductance antenna," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 1280-1285, Mar 2007.
    [13] 簡鈺庭, "脈衝調變式電感式電漿源之製作與特性量測," 國立清華大學工程與系統科學研究所碩士論文, 1999.
    [14] J. T. Verdeyen, et al., "Modulated Discharges - Effect on Plasma Parameters and Deposition " Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 8, pp. 1851-1856, May-Jun 1990.
    [15] M. Tadokoro, et al., "Time resolved optical emission spectroscopy of an inductively coupled plasma in argon and oxygen," Physical Review E, vol. 57, pp. R43-R46, Jan 1998.
    [16] D. P. Lymberopoulos, et al., "Fluid simulation of a pulsed-power inductively coupled argon plasma," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 16, pp. 564-571, Mar-Apr 1998.
    [17] S. Banna, et al., "Inductively Coupled Pulsed Plasmas in the Presence of Synchronous Pulsed Substrate Bias for Robust, Reliable, and Fine Conductor Etching," Ieee Transactions on Plasma Science, vol. 37, pp. 1730-1746, Sep 2009.
    [18] T. H. Ahn, et al., "Negative ion measurements and etching in a pulsed-power inductively coupled plasma in chlorine," Plasma Sources Science & Technology, vol. 5, pp. 139-144, May 1996.
    [19] 鞏茂林, "利用蘭牟爾探針量測混合氯氣及氬氣之電感式電漿," 國立清華大學工程與系統科學系研究所碩士論文, 2004.
    [20] 張家豪, "Investigation of instabilities in inductively coupled Ar plasma," 國立清華大學工程與系統科學研究所博士論文, 2007.
    [21] D. M. Pozar, "Microwave Engineering," WILEY.
    [22] 柳克強, "電漿實驗與實驗設計方法," 2010.
    [23] 潘興強, "蘭牟爾探針量測系統發展," 國立清華大學工程與系統科學研究所碩士論文, 1998.
    [24] M. A. Lieberman and S. Ashida, "Global models of pulse-power-modulated high-density, low-pressure discharges," Plasma Sources Science & Technology, vol. 5, pp. 145-158, May 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE