簡易檢索 / 詳目顯示

研究生: 蔡佳容
Tsai, Chia Jung
論文名稱: 利用電子自旋共振技術探究奈米侷限、變構轉換、擁擠效應對於蛋白質動態及活性之影響
ESR Approaches to Reveal Protein Dynamics and Activity under Conditions of Nano-confinement, Allosteric Transition, and Molecular Crowding
指導教授: 江昀緯
Chiang, Yun Wei
口試委員: 洪嘉呈
Horng, Jia Cherng
陳貴通
Tan, Kui Thong
鄒德里
Tzou, Der Lii M
黃聖言
Hwang, Dennis W
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 125
中文關鍵詞: 電⼦子⾃自旋共振擁擠效應奈⽶米侷限蛋⽩白質動態
外文關鍵詞: ESR, Molecular crowding, nano-confinement, protein dynamic
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • N.A.


    Spin-label electron spin resonance (ESR) spectroscopy has been extensively developed in the latest decade for studying problems in the fields of biology, physics, and chemistry. With the site-directed spin-labeling techniques, ESR can be employed to resolve the complexity of molecular dynamics, probing local environments of various molecular complexes such as protein, membrane, and macromolecular assemblies. In particular, continuous wave (cw) ESR and double electron-electron resonance (DEER) are among the most powerful ESR techniques. This dissertation demonstrates three biophysical applications of the ESR techniques that have never been reported. First, we describe how useful the ESR technique can be utilized to reveal details of molecular motions of spin-labeled biomolecules as confined in nanochannels. Specifically, we characterize the rotational dynamics of a long (14-residue) proline-based peptide (approximately 4 nm in length) under anisotropic nanoconfinement using spin-label ESR techniques as well as spectral simulations. We show by pulsed ESR experiments that the conformations of the peptide in several different nanochannels and a bulk solvent are retained. Parameters characterizing the dynamics of the peptide regarding temperature (200 ~ 300 K) and nanoconfinement are determined from nonlinear least-squares fits of theoretical calculations to the multifrequency (X- and Q-band) experimental spectra. Remarkably, we found that this long helical peptide undergoes a large degree of rotational anisotropy and orientational ordering inside the nanochannels, but not in the bulk solvent. The rotational anisotropy of the helical peptide barely changes with the nanoconfinement effects and remains substantial, as the nanochannel diameter is varied from 6.1 to 7.1 and 7.6 nm. This finding is advantageous for addressing purposes of anisotropic nanoconfinement and for advancing our understanding of the rotational dynamics of nano-objects as confined deeply inside the nanostructures of materials. In the second project presented in this dissertation, we report a ESR study of Bcl-2 associated X (BAX) protein. BAX protein plays a key role in the mitochondria-mediated apoptosis. However, it remains unclear by what mechanism BAX is triggered to initiate apoptosis. Here, we reveal the activation mechanism underlying the transformation from inactive to active BAX. An inactive BAX monomer was found to exhibit conformational heterogeneity and exist at equilibrium in two populations of conformation, one of which has never been reported. We show that upon apoptotic stimulus by BH3-only peptides, BAX can be induced to convert into either a ligand-bound monomer or an oligomer through a conformational selection mechanism. The kinetics of reaction is studied by means of time-resolved ESR, allowing a direct in-situ observation for the transformation of BAX from the native to the bound states. In vitro mitochondrial assays provide further discrimination between the proposed BAX states, thereby revealing a population-shift allosteric mechanism in the process. BAX′s apoptotic function is shown to critically depend on excursions between different structural conformations. In the third project, we apply the ESR techniques to investigate the effects of molecular crowding on protein stability. We carry out a comprehensive investigation on the conformational stability of T4 lysozyme (T4L) enzyme in varying crowding conditions, 300 − 500 g/L of crowders (including BSA protein, glycerol, Ficoll, and PVP polymers), using cw-ESR, circular dichroism, and Thermofluor spectroscopy methods. Double-labeled spectra were used to probe the local dynamical changes and distance distribution of T4L protein in the applied crowded and thermal conditions. ESR spectra were obtained from three T4L mutants to study the crowding effects on the tertiary structure (with mutant T4L-A), secondary structure (with mutant T4L-B), and hinge-bending activity (with mutant T4L-C) at temperatures 280 − 343 K. The results of the T4L-A and T4L-B show a decreased structural stability, in terms of conformational dynamics and free energy, with increasing concentration of the crowders. In contrast, the structural stability of the T4L-C mutant was found to increase with the crowder concentrations. This study indicates that structural domains or segments of a protein respond differently to molecular crowding effects. In summary, results presented in this dissertation have expanded the applications of spin-label ESR techniques one step further to resolving several important problems in the interdisciplinary field of biology, physics, and chemistry.

    Abstract i Outline iii Figures vi Tables xii Chapter 1. 1 Introduction 1 Reference 6 Chapter 2. Effects of Anisotropic Nanoconfinement on Rotational Dynamics of Biomolecules: An Electron Spin Resonance Study 7 2.1 Introduction 7 2.2 Materials and Methods 9 2.2.1 Polypeptides 9 2.2.2 Nanochannels 10 2.2.3 Experimental Procedures 10 2.2.4 Cw/pulsed-ESR Measurements 12 2.2.5 Cw-ESR Spectral Simulations and Pulsed-DEER Analyses 13 2.3 Results 17 2.3.1 Structural Conformations of the Encapsulated Biomolecules 17 2.3.2 Theoretical Simulations of the Multifrequency cw-ESR Spectra 22 2.3.3 The Significance of the Spectral Components 28 2.3.4 Dependence of Distance Distribution on Maximum Dipolar Evolution Time 30 2.4 Conclusions 31 Reference 32 Chapter 3. BAX-induced Apoptosis Can Be Initiated Through A Conformational Selection Mechanism 36 3.1 Introduction 36 3.2 Materials and Methods 37 3.2.1 Materials and sample preparation 37 3.2.2 Selection of spin-labeling sites on BAX 38 3.2.3 Activation of BAX by BimBH3 39 3.2.4 Mitochondria isolation and cytochrome c release assays 40 3.2.5 Pulsed/Cw-ESR experiments, MtsslWizard and data analysis 41 3.3 Results 45 3.3.1 Both monomeric and oligomeric BAX exist after apoptotic stimuli 45 3.3.2 Oligomeric BAX exists in abundance after apoptotic stimuli 50 3.3.3 Time course observation of the coexisting components during the activation 52 3.3.4 Inactive BAX is a conformationally heterogeneous monomer 55 3.3.5 A plausible conformation of the bound monomeric BAX 61 3.3.6 BAX-induced cytochrome c release activity 66 3.4 Discussions 68 3.4.1 BAX activation can be understood by a population-shift model 69 3.5 Summary 71 Reference 72 Chapter 4. ESR to Study Molecular Crowding Effects on Protein Dynamics and Stability 77 4.1 Introduction 77 4.2 Materials and Methods 78 4.2.1 Protein preparation and mutation 78 4.2.2 T4L enzyme activity and hinge-bending motion 80 4.2.3 Crowders and Crowding conditions 81 4.2.4 CW-ESR experiments 82 4.2.5 CW-ESR analysis 82 4.2.5.1 Dipolar interaction 83 4.2.5.2 Free energy analysis based on the result from P(r) 85 4.2.6 ThermoFluor spectriscopy 86 4.2.7 CD experiments 87 4.3 Results 88 4.3.1 Protein global stability is not affected by the studied crowding conditions 88 4.3.1.1 CW-ESR 88 4.3.1.2 Hydrophobic stability remains the same over different crowders 89 4.3.2 Crowding effects on the stability of tertiary structure 90 4.3.2.1 Observation of spectroscopic evidence 90 4.3.2.2 Dipolar broadening analysis by convolution method 96 4.3.2.3 Inter-molecular distance distributions and free energy 101 4.3.3 Crowding effects on the stability of secondary structure of T4L 106 4.3.3.1 CD results 106 4.3.3.2 CW-ESR results 106 4.3.4 Crowding effects on the T4L enzymatic activity 110 4.4 Summary 112 Reference 114 Appendix 117

    Chapter 1.
    (1)Hubbell, W. L.; Gross, A.; Langen, R.; Lietzow, M. A. Recent Advances in Site-Directed Spin Labeling of Proteins. Curr. Opin. Struct. Biol., 1998, 8, 649–656.
    (2) Hubbell, W. L.; López, C. J.; Altenbach, C.; Yang, Z. Technological Advances in Site-Directed Spin Labeling of Proteins. Curr. Opin. Struct. Biol., 2013, 23, 725–733.
    (3) Bordignon, E. Site-Directed Spin Labeling of Membrane Proteins. Top. Curr. Chem. 2012, 321, 121–158.
    (4) Hubbell, W. L.; Altenbach, C. Investigation of Structure and Dynamics in Membrane Proteins Using Site-Directed Spin Labeling. Curr. Opin. Struct. Biol., 1994, 4, 566–573.
    (5) Columbus, L.; Hubbell, W. L. Mapping Backbone Dynamics in Solution with Site-Directed Spin Labeling: GCN4-58 bZip Free and Bound to DNA. Biochemistry 2004, 43, 7273–7287.
    (6) Schneider, D. J., Freed, J. H. Spin Labeling:Theory and Application. In; Beerliner, L. J., Reuben, J., Ed.; New York, 1989; Vol. 7, pp. 1–76.
    (7) Altenbach, C.; Marti, T.; Khorana, H. G.; Hubbell, W. L. Transmembrane Protein Structure: Spin Labeling of Bacteriorhodopsin Mutants. Science 1990, 248, 1088–1092.
    (8) Steinhoff, H. J.; Mollaaghababa, R.; Altenbach, C.; Khorana, H. G.; Hubbell, W. L. Site Directed Spin Labeling Studies of Structure and Dynamics in Bacteriorhodopsin. Biophys. Chem. 1995, 56, 89–94.

    Chapter 2.
    (1)Mirkovic, T.; Zacharia, N. S.; Scholes, G. D.; Ozin, G. a. Nanolocomotion - Catalytic Nanomotors and Nanorotors. Small 2010, 6, 159–167.
    (2) Giménez-López, M. del C.; Moro, F.; La Torre, A.; Gómez-García, C. J.; Brown, P. D.; van Slageren, J.; Khlobystov, A. N. Encapsulation of Single-Molecule Magnets in Carbon Nanotubes. Nat. Commun. 2011, 2, 407.
    (3) Gardeniers, H. J. G. E. Chemistry in Nanochannel Confinement. Anal. Bioanal. Chem. 2009, 394, 385–387.
    (4) Gazit, E. Self-Assembled Peptide Nanostructures: The Design of Molecular Building Blocks and Their Technological Utilization. Chem. Soc. Rev. 2007, 36, 1263–1269.
    (5) Zhou, H.-X.; Rivas, G.; Minton, A. P. Macromolecular Crowding and Confinement: Biochemical, Biophysical, and Potential Physiological Consequences. Annu. Rev. Biophys. 2008, 37, 375–397.
    (6) Zhang, S. Q.; Cheung, M. S. Manipulating Biopolymer Dynamics by Anisotropic Nanoconfinement. Nano Lett. 2007, 7, 3438–3442.
    (7) Luan, B.; Martyna, G.; Stolovitzky, G. Characterizing and Controlling the Motion of ssDNA in a Solid-State Nanopore. Biophys. J. 2011, 101, 2214–2222.
    (8) Lee, C. H.; Lin, T. S.; Mou, C. Y. Mesoporous Materials for Encapsulating Enzymes. Nano Today, 2009, 4, 165–179.
    (9) Mittal, J.; Best, R. B. Thermodynamics and Kinetics of Protein Folding under Confinement. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 20233–20238.
    (10) De Feyter, S. Molecular Motors: Powered by Electrons. Nat. Nanotechnol. 2011, 6, 610–611.
    (11) Borbat, P. P.; Costa-Filho, A. J.; Earle, K. A.; Moscicki, J. K.; Freed, J. H. Electron Spin Resonance in Studies of Membranes and Proteins. Science 2001, 291, 266–269.
    (12) Huang, Y.-W.; Lai, Y.-C.; Tsai, C.-J.; Chiang, Y.-W. Mesopores Provide an Amorphous State Suitable for Studying Biomolecular Structures at Cryogenic Temperatures. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14145–14150.
    (13) Sung, T. C.; Chiang, Y. W. Identification of Complex Dynamic Modes on Prion Protein Peptides Using Multifrequency ESR with Mesoporous Materials. Phys. Chem. Chem. Phys. 2010, 12, 13117–13125.
    (14) Gulla, S. V; Sharma, G.; Borbat, P.; Freed, J. H.; Ghimire, H.; Benedikt, M. R.; Holt, N. L.; Lorigan, G. A.; Rege, K.; Mavroidis, C.; et al. Molecular-Scale Force Measurement in a Coiled-Coil Peptide Dimer by Electron Spin Resonance. J. Am. Chem. Soc. 2009, 131, 5374–5375.
    (15) Freed, J. H. New Technologies in Electron Spin Resonance. Annu. Rev. Phys. Chem. 2000, 51, 655–689.
    (16) Pannier, M.; Veit, S.; Godt, A.; Jeschke, G.; Spiess, H. W. Dead-Time Free Measurement of Dipole-Dipole Interactions between Electron Spins. J. Magn. Reson. 2000, 142, 331–340.
    (17) Borbat, P. P.; Freed, J. H. Measuring Distances by Pulsed Dipolar ESR Spectroscopy: Spin-Labeled Histidine Kinases. Methods Enzymol., 2007, 423, 52–116.
    (18) Schneider, D. J., Freed, J. H. Spin Labeling:Theory and Application. In; Beerliner, L. J., Reuben, J., Ed.; New York, 1989; Vol. 7, pp. 1–76.
    (19) Yang, C. M.; Zibrowius, B.; Schmidt, W.; Schüth, F. Stepwise Removal of the Copolymer Template from Mesopores and Micropores in SBA-15. Chem. Mater. 2004, 16, 2918–2925.
    (20) Huang, Y.-W.; Chiang, Y.-W. Spin-Label ESR with Nanochannels to Improve the Study of Backbone Dynamics and Structural Conformations of Polypeptides. Phys. Chem. Chem. Phys. 2011, 13, 17521–17531.
    (21) Budil, D. E.; Lee, S.; Saxena, S.; Freed, J. H. Nonlinear-Least-Squares Analysis of Slow-Motion EPR Spectra in One and Two Dimensions Using a Modified Levenberg–Marquardt Algorithm. J. Magn. Reson. Ser. A 1996, 120, 155–189.
    (22) Stoll, S.; Schweiger, A. EasySpin, a Comprehensive Software Package for Spectral Simulation and Analysis in EPR. J. Magn. Reson. 2006, 178, 42–55.
    (23) Milischuk, A. a; Ladanyi, B. M. Structure and Dynamics of Water Confined in Silica Nanopores. J. Chem. Phys. 2011, 135, 174709.
    (24) Chiang, Y.-W.; Borbat, P. P.; Freed, J. H. The Determination of Pair Distance Distributions by Pulsed ESR Using Tikhonov Regularization. J. Magn. Reson. 2005, 172, 279–295.
    (25) Bode, B. E.; Margraf, D.; Plackmeyer, J.; Dürner, G.; Prisner, T. F.; Schiemann, O. Counting the Monomers in Nanometer-Sized Oligomers by Pulsed Electron-Electron Double Resonance. J. Am. Chem. Soc. 2007, 129, 6736–6745.
    (26) Stapley, B. J.; Creamer, T. P. A Survey of Left-Handed Polyproline II Helices. Protein Sci. 1999, 8, 587–595.
    (27) Cowan, P. M., McGavin, S. Structure of Poly-L-Prolin. Nature 1955, 176, 501–503.
    (28) Schuler, B.; Lipman, E. A.; Steinbach, P. J.; Kumke, M.; Eaton, W. A. Polyproline and the “Spectroscopic Ruler” Revisited with Single-Molecule Fluorescence. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 2754–2759.
    (29) Yuan, H.; Xia, T.; Schuler, B.; Orrit, M. Temperature-Cycle Single-Molecule FRET Microscopy on Polyprolines. Phys. Chem. Chem. Phys. 2011, 13, 1762–1769.
    (30) Bonora, M.; Becker, J.; Saxena, S. Suppression of Electron Spin-Echo Envelope Modulation Peaks in Double Quantum Coherence Electron Spin Resonance. J. Magn. Reson. 2004, 170, 278–283.
    (31) Chiang, Y. W.; Zheng, T. Y.; Kao, C. J.; Horng, J. C. Determination of Interspin Distance Distributions by Cw-ESR Is a Single Linear Inverse Problem. Biophys. J. 2009, 97, 930–936.

    Chapter 3.
    (1)Petros, A. M.; Olejniczak, E. T.; Fesik, S. W. Structural Biology of the Bcl-2 Family of Proteins. Biochim. Biophys. Acta 2004, 1644, 83–94.
    (2) Youle, R. J.; Strasser, A. The BCL-2 Protein Family: Opposing Activities That Mediate Cell Death. Nat. Rev. Mol. Cell Biol. 2008, 9, 47–59.
    (3) Czabotar, P. E.; Colman, P. M.; Huang, D. C. S. Bax Activation by Bim? Cell Death Differ. 2009, 16, 1187–1191.
    (4) Rodrigues, C.; Solá, S.; Sharpe, J. Tauroursodeoxycholic Acid Prevents Bax-Induced Membrane Perturbation and Cytochrome C Release in Isolated Mitochondria. Biochemistry 2003, 42, 3070–3080.
    (5) Walensky, L. D., Gavathiotis, E. BAX Unleashed: The Biochemical Transformation of an Inactive Cytosolic Monomer into a Toxic Mitochondrial Pore. Trends Biochem Sci 2011, 36, 642–652.
    (6) Antonsson, B.; Montessuit, S.; Sanchez, B.; Martinou, J. C. Bax Is Present as a High Molecular Weight Oligomer/complex in the Mitochondrial Membrane of Apoptotic Cells. J. Biol. Chem. 2001, 276, 11615–11623.
    (7) Suzuki, M.; Youle, R. J.; Tjandra, N. Structure of Bax: Coregulation of Dimer Formation and Intracellular Localization. Cell 2000, 103, 645–654.
    (8) Valentijn, a J.; Upton, J.-P.; Bates, N.; Gilmore, a P. Bax Targeting to Mitochondria Occurs via Both Tail Anchor-Dependent and -Independent Mechanisms. Cell Death Differ. 2008, 15, 1243–1254.
    (9) Czabotar, P. E.; Westphal, D.; Dewson, G.; Ma, S.; Hockings, C.; Fairlie, W. D.; Lee, E. F.; Yao, S.; Robin, A. Y.; Smith, B. J.; et al. Bax Crystal Structures Reveal How BH3 Domains Activate Bax and Nucleate Its Oligomerization to Induce Apoptosis. Cell 2013, 152, 519–531.
    (10) Huang, Y.-W.; Lai, Y.-C.; Tsai, C.-J.; Chiang, Y.-W. Mesopores Provide an Amorphous State Suitable for Studying Biomolecular Structures at Cryogenic Temperatures. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 14145–14150.
    (11) Borbat, P. P.; Freed, J. H. Measuring Distances by Pulsed Dipolar ESR Spectroscopy: Spin-Labeled Histidine Kinases. Methods in Enzymology, 2007, 423, 52–116.
    (12) Jeschke, G. DEER Distance Measurements on Proteins. Annu. Rev. Phys. Chem. 2012, 63, 419–446.
    (13) Airola, M. V.; Sukomon, N.; Samanta, D.; Borbat, P. P.; Freed, J. H.; Watts, K. J.; Crane, B. R. HAMP Domain Conformers That Propagate Opposite Signals in Bacterial Chemoreceptors. PLoS Biol. 2013, 11.
    (14) Georgieva, E. R., Borbat, P. P., Ginter, C., Freed, J. H., Boudker, O. Conformational Ensemble of the Sodium Coupled Aspartate Transporter. Nat Struct Mol Biol 2013, 20, 215–221.
    (15) Gavathiotis, E.; Suzuki, M.; Davis, M. L.; Pitter, K.; Bird, H.; Katz, S. G.; Tu, H.; Kim, H.; Cheng, E. H. BAX Activation Is Initiated at a Novel Interaction Site. Nature 2008, 455, 1076–U1076.
    (16) Gavathiotis, E., Reyna, D. E., Davis, M. L., Bird, G. H., W. L. D. BH3-Triggered Structural Reorganization Drives the Activation of Pro-Apoptotic BAX. Mol. cell. 2010, 40, 481–492.
    (17) Okamoto, T.; Zobel, K.; Fedorova, A.; Quan, C.; Yang, H.; Fairbrother, W. J.; Huang, D. C. S.; Smith, B. J.; Deshayes, K.; Czabotar, P. E. Stabilizing the pro-Apoptotic BimBH3 Helix (BimSAHB) Does Not Necessarily Enhance Affinity or Biological Activity. ACS Chem. Biol. 2013, 8, 297–302.
    (18) Walensky, L. D.; Pitter, K.; Morash, J.; Oh, K. J.; Barbuto, S.; Fisher, J.; Smith, E.; Verdine, G. L.; Korsmeyer, S. J. A Stapled BID BH3 Helix Directly Binds and Activates BAX. Mol. Cell 2006, 24, 199–210.
    (19) Kuo, Y.; Tseng, Y.; Chiang, Y. Concurrent Observation of Bulk and Protein Hydration Water by Spin-Label ESR under Nanocon Fi Nement. Langmuir 2013, 29, 13865-13872.
    (20) Pannier, M.; Veit, S.; Godt, A.; Jeschke, G.; Spiess, H. W. Dead-Time Free Measurement of Dipole-Dipole Interactions between Electron Spins. J. Magn. Reson. 2000, 142, 331–340.
    (21) Georgieva, E. R.; Roy, A. S.; Grigoryants, V. M.; Borbat, P. P.; Earle, K. a; Scholes, C. P.; Freed, J. H. Effect of Freezing Conditions on Distances and Their Distributions Derived from Double Electron Electron Resonance (DEER): A Study of Doubly-Spin-Labeled T4 Lysozyme. J. Magn. Reson. 2012, 216, 69–77.
    (22) Chiang, Y.-W.; Borbat, P. P.; Freed, J. H. The Determination of Pair Distance Distributions by Pulsed ESR Using Tikhonov Regularization. J. Magn. Reson. 2005, 172, 279–295.
    (23) Chiang, Y. W.; Borbat, P. P.; Freed, J. H. Maximum Entropy: A Complement to Tikhonov Regularization for Determination of Pair Distance Distributions by Pulsed ESR. J. Magn. Reson. 2005, 177, 184–196.
    (24) Hagelueken, G.; Ward, R.; Naismith, J. H.; Schiemann, O. MtsslWizard: In Silico Spin-Labeling and Generation of Distance Distributions in PyMOL. Appl. Magn. Reson. 2012, 42, 377–391.
    (25) Kelley, L. A.; Gardner, S. P.; Sutcliffe, M. J. An Automated Approach for Defining Core Atoms and Domains in an Ensemble of NMR-Derived Protein Structures. Protein Eng 1997, 10, 737–741.
    (26) Arokium, H.; Ouerfelli, H.; Velours, G.; Camougrand, N.; Vallette, F. M.; Manon, S. Substitutions of Potentially Phosphorylatable Serine Residues of Bax Reveal How They May Regulate Its Interaction with Mitochondria. J. Biol. Chem. 2007, 282, 35104–35112.
    (27) Czabotar, P. E.; Lee, E. F.; Thompson, G. V; Wardak, A. Z.; Fairlie, W. D.; Colman, P. M. Mutation to Bax beyond the BH3 Domain Disrupts Interactions with pro-Survival Proteins and Promotes Apoptosis. J. Biol. Chem. 2011, 286, 7123–7131.
    (28) Er, E.; Lalier, L.; Cartron, P.-F.; Oliver, L.; Vallette, F. M. Control of Bax Homodimerization by Its Carboxyl Terminus. J. Biol. Chem. 2007, 282, 24938–24947.
    (29) Nechushtan, a; Smith, C. L.; Hsu, Y. T.; Youle, R. J. Conformation of the Bax C-Terminus Regulates Subcellular Location and Cell Death. EMBO J. 1999, 18, 2330–2341.
    (30) Bouvignies, G.; Vallurupalli, P.; Hansen, D. F.; Correia, B. E.; Lange, O.; Bah, A.; Vernon, R. M.; Dahlquist, F. W.; Baker, D.; Kay, L. E. Solution Structure of a Minor and Transiently Formed State of a T4 Lysozyme Mutant. Nature 2011, 477, 111–114.
    (31) Di Nardo, A. a; Korzhnev, D. M.; Stogios, P. J.; Zarrine-Afsar, A.; Kay, L. E.; Davidson, A. R. Dramatic Acceleration of Protein Folding by Stabilization of a Nonnative Backbone Conformation. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 7954–7959.
    (32) Tokuriki, N.; Tawfik, D. S. Protein Dynamism and Evolvability. Science 2009, 324, 203–207.
    (33) Walden, W. E.; Selezneva, A. I.; Dupuy, J.; Volbeda, A.; Fontecilla-Camps, J. C.; Theil, E. C.; Volz, K. Structure of Dual Function Iron Regulatory Protein 1 Complexed with Ferritin IRE-RNA. Science 2006, 314, 1903–1908.
    (34) Suzuki, M.; Youle, R.; Tjandra, N. Structure of Bax: Coregulation of Dimer Formation and Intracellular Localization. Cell 2000, 103, 645–654.
    (35) Bleicken, S.; Classen, M.; Padmavathi, P. V. L.; Ishikawa, T.; Zeth, K.; Steinhoff, H.-J.; Bordignon, E. Molecular Details of Bax Activation, Oligomerization, and Membrane Insertion. J. Biol. Chem. 2010, 285, 6636–6647.

    Chapter 4.
    (1)Yeung, P. S. W.; Axelsen, P. H. The Crowded Environment of a Reverse Micelle Induces the Formation of Beta-Strand Seed Structures for Nucleating Amyloid Fibril Formation. J. Am. Chem. Soc. 2012, 134, 6061–6063.
    (2) Sang, L.-C.; Coppens, M.-O. Effects of Surface Curvature and Surface Chemistry on the Structure and Activity of Proteins Adsorbed in Nanopores. Phys. Chem. Chem. Phys. 2011, 13, 6689–6698.
    (3) Yancey, P. H.; Clark, M. E.; Hand, S. C.; Bowlus, R. D.; Somero, G. N. Living with Water Stress: Evolution of Osmolyte Systems. Science 1982, 217, 1214–1222.
    (4) Fleissner, M. R.; Guo, Z.; Kusnetzow, A. K.; Hubbell, W. L. Osmolyte Perturbation Reveals Conformational Equilibria in Spin-Labeled Proteins. Protein Sci. 2009, 18, 1637–1652.
    (5) Rösgen, J.; Pettitt, B. M.; Bolen, D. W. Protein Folding, Stability, and Solvation Structure in Osmolyte Solutions. Biophys. J. 2005, 89, 2988–2997.
    (6) Harada, R.; Sugita, Y.; Feig, M. Protein Crowding Affects Hydration Structure and Dynamics. J. Am. Chem. Soc. 2012, 134, 4842–4849.
    (7) Zimmerman, S. B.; Trach, S. O. Estimation of Macromolecule Concentrations and Excluded Volume Effects for the Cytoplasm of Escherichia Coli. J. Mol. Biol. 1991, 222, 599–620.
    (8) Zorrilla, S.; Hink, M. A.; Visser, A. J. W. G.; Lillo, M. P. Translational and Rotational Motions of Proteins in a Protein Crowded Environment. Biophys. Chem. 2007, 125, 298–305.
    (9) Zhou, H.-X. Influence of CrowdedCellular Environments on Protein Folding, Binding, and Oligomerization:Biological Consequences and Potentialsof AtomisticModeling. FEBS Lett. 2013, 587, 1053-1061.
    (10) Senske, M.; Törk, L.; Born, B.; Havenith, M.; Herrmann, C.; Ebbinghaus, S. Protein Stabilization by Macromolecular Crowding through Enthalpy rather than Entropy. J. Am. Chem. Soc. 2014, 136, 9036–9041.
    (11) Li, C.; Pielak, G. Using NMR to Distinguish Viscosity Effects from Nonspecific Protein Binding under Crowded Conditions. J. Am. Chem. Soc. 2009, 131, 1368–1369.
    (12) Pielak, G. J.; Li, C.; Miklos, a. C.; Schlesinger, a. P.; Slade, K. M.; Wang, G. F.; Zigoneanu, I. G. Protein Nuclear Magnetic Resonance under Physiological Conditions. Biochemistry 2009, 48, 226–234.
    (13) Li, C.; Charlton, L. M.; Lakkavaram, A.; Seagle, C.; Wang, G.; Young, G. B.; Macdonald, J. M.; Pielak, G. J. Differential Dynamical Effects of Macromolecular Crowding on an Intrinsically Disordered Protein and a Globular Protein: Implications for in-Cell NMR Spectroscopy. J. Am. Chem. Soc. 2008, 130, 6310–6311.
    (14) Sarkar, M.; Smith, A. E.; Pielak, G. J. Impact of Reconstituted Cytosol on Protein Stability. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 19342–19347.
    (15) Matthews, B. W.; Remington, S. J. The Three Dimensional Structure of the Lysozyme from Bacteriophage T4. Proc. Natl. Acad. Sci. U. S. A. 1974, 71, 4178–4182.
    (16) Faber, H. R.; Matthews, B. W. A Mutant T4 Lysozyme Displays Five Different Crystal Conformations. Nature 1990, 348, 263–266.
    (17) Dixon, M. M.; Nicholson, H.; Shewchuk, L.; Baase, W. A.; Matthews, B. W. Structure of a Hinge-Bending Bacteriophage T4 Lysozyme Mutant, Ile3→Pro. J. Mol. Biol. 1992, 227, 917–933.
    (18) Langen, R.; Oh, K. J.; Cascio, D.; Hubbell, W. L. Crystal Structures of Spin Labeled T4 Lysozyme Mutants:  Implications for the Interpretation of EPR Spectra in Terms of Structure. Biochemistry 2000, 39, 8396–8405.
    (19) Yirdaw, R. B.; Mchaourab, H. S. Direct Observation of T4 Lysozyme Hinge-Bending Motion by Fluorescence Correlation Spectroscopy. Biophys. J. 2012, 103, 1525-1536.
    (20) Mchaourab, H. S.; Lietzow, M. A.; Hideg, K.; Hubbell, W. L. Motion of Spin-Labeled Side Chains in T4 Lysozyme . Correlation with Protein Structure and Dynamics. Biochemistry 1996, 2960, 7692–7704.
    (21) Altenbach, C.; Oh, K. J.; Trabanino, R. J.; Hideg, K.; Hubbell, W. L. Estimation of Inter-Residue Distances in Spin Labeled Proteins at Physiological Temperatures: Experimental Strategies and Practical Limitations. Biochemistry 2001, 40, 15471–15482.
    (22) Gullà, S. V.; Sharma, G.; Borbat, P.; Freed, J. H.; Ghimire, H.; Benedikt, M. R.; Holt, N. L.; Lorigan, G. A.; Rege, K.; Mavroidis, C.; et al. Molecular-Scale Force Measurement in a Coiled-Coil Peptide Dimer by Electron Spin Resonance. J. Am. Chem. Soc. 2009, 131, 5374–5375.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE