研究生: |
羅一翔 Lo, I Hsiang |
---|---|
論文名稱: |
氧化鋅奈米線/金屬氧化物複合電極在超級電容器之應用 ZnO nanowires/Metal Oxide composite electrodes for Supercapacitor applications |
指導教授: |
黃金花
Huang, Jin Hua |
口試委員: |
陳聯泰
楊昌中 吳錦貞 方偉權 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 超級電容器 、氫氧化鎳 、氧化鋅奈米線 、脈衝電沉積 、奈米複合材料 |
外文關鍵詞: | Supercapacitors, Nickel hydroxide, ZnO nanowires, Pulse electrodeposition, Nanocomposites |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用化學浴沉積法,在FTO基板上成長排列有序的氧化鋅奈米線,並利用脈衝電化學沉積法,將奈米片狀結構的氫氧化鎳均勻沉積在氧化鋅奈米線的表面。在研究中針對脈衝電化學沉積法的沉積參數,做了系統性的討論。其中通電時間以及關閉電流時間,會對片狀結構的尺寸以及間隙造成影響;而沉積圈數的多寡,則會對氫氧化鎳殼層的厚度以及片狀結構的大小造成影響。使用最佳化參數所製成的氧化鋅/氫氧化鎳奈米複合材料電極,具有高達1830 F/g的比電容值,51.5 Wh/kg的能量密度以及9 kW/kg的功率密度,但是比電容值維持率在經過1000次掃描後僅有約80 %。
為了改善比電容值維持率,在原先的電鍍液中添加錳的前驅物,並探討其含量對電容性能的影響。另外由於添加錳的前驅物,所以對相關的沉積參數再做一次系統性的討論。最後所製成的氧化鋅/鎳錳氧化物氫氧化物奈米複合材料電極,得到的比電容值為1642 F/g、能量密度為42.2 Wh/kg、功率密度為9 kW/kg以及在3000次掃描有高達94.7 %的比電容值維持率。儘管比電容值下降了近200 F/g,但是成功的將比電容值維持率提升至少15 %,這將有助於擴大超級電容器的應用範圍。
A high-performance supercapacitor based on Ni(OH)2 nanoflakes modified ZnO nanowires (NWs) was developed. The well-aligned ZnO NWs were synthesized by chemical bath deposition, followed by pulse electrodeposition of Ni(OH)2 nanoflakes on the surface of ZnO NWs. The effects of the pulse electrodeposition conditions were systematically investigated. Both the current-on time and current-off time were found to affect the size and interspacing of the nanoflakes, while the deposition cycle number determines the thickness of the Ni(OH)2 nanoflake shell. The ZnO/Ni(OH)2 nanocomposite electrode fabricated under the optimal pulse electrodeposition conditions has exhibited a large specific capacitance of 1830 F/g, a high energy density of 51.5 Wh/kg, a high power density of 9 kW/kg, and ~80 % specific capacitance retention after 1000 cycles.
To improve the specific capacitance retention, Mn precursor was added into the deposition solution. The optimal amount of Mn precursor and the pulse electrodeposition conditions were discussed. The resultant ZnO/(Ni, Mn) oxide or hydroxide nanocomposite electrode fabricated under the optimal conditions has exhibited a specific capacitance of 1642 F/g, an energy density of 42.2 Wh/kg, a power density of 9 kW/kg, and 94.7 % specific capacitance retention after 3000 cycles. The high supercapacitor performance combined with using of the low-cost and environmentally friendly materials will make the ZnO/(Ni, Mn) oxide or hydroxide nanocomposite electrode desirable for supercapacitor applications.
[1] B. E. Conway, Electrochemical Supercapacitors, Kluwer-Plenum Pub. Co., New York, 1999.
[2] http://energy.gov/eere/vehicles/fact-918-march-28-2016-global-plug-light-vehicle-sales-increased-about-80-2015, U.S. Department of Energy.
[3] M. C. R. Kotz, Electrochimica Acta 2000, 45, 2483-2498.
[4] A. G. Pandolfo, A. F. Hollenkamp, Journal of Power Sources 2006, 157, 11-27.
[5] http://www.murata.com/en-us/products/emiconfun/capacitor/2015/03/24/20150 324-p1, Murata Manufacturing Co., Ltd.
[6] C. C. Hu, C. C. Wang, K. H. Chang, Electrochimica Acta 2007, 52, 2691-2700.
[7] http://www.wikiwand.com/en/Pseudocapacitance, wikiwand.
[8] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, International Journal of Hydrogen Energy 2009, 34, 4889-4899.
[9] H. Wang, M. Yoshio, A. K. Thapa, H. Nakamura, Journal of Power Sources 2007, 169, 375-380.
[10] B. Fang, L. Binder, Electrochimica Acta 2007, 52, 6916-6921.
[11] X. M. Liu, R. Zhang, L. Zhan, D. H. Long, W. M. Qiao, J. H. Yang, L. C. Ling, New Carbon Materials 2007, 22, 153-158.
[12] H. Wang, M. Yoshio, Electrochemistry Communications 2006, 8, 1481-1486.
[13] E. Gomibuchi, T. Ichikawa, K. Kimura, S. Isobe, K. Nabeta, H. Fujii, Carbon 2006, 44, 983-988.
[14] B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, Y. Yang, Electrochimica Acta 2007, 52, 4595-4598.
83
[15] Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa, Electrochemical Solid-State Letters 2007, 10, A106-A110.
[16] S. Chen, J. Zhu, X. D. Wu, Q. F. Han, X. Wang, ACS nano 2010, 4, 2822-2830.
[17] W. Fang, O. Chyan, C. Sun, C. Wu, C. Chen, K. Chen, L. Chen, J. Huang, Electrochemistry Communications 2007, 9, 239-244.
[18] C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, Nano Letters 2006, 6, 2690-2695.
[19] C. C. Hu, Y. H. Huang, K. H. Chang, Journal of Power Sources 2002, 108, 117-127.
[20] J. Yan, E. Khoo, A. Sumboja, P. S. Lee, ACS nano 2010, 4, 4247-4255.
[21] X. H. Xia, J. P. Tu, X. L. Wang, C. D. Gu, X. B. Zhao, Journal of Materials Chemistry 2011, 21, 671-679.
[22] Z. Lu, Z. Chang, W. Zhu, X. Sun, Chemical Communications. 2011, 47, 9651-9653.
[23] S. G. Kandalkar, J. L. Gunjakar, C. D. Lokhande, Applied Surface Science 2008, 254, 5540-5544.
[24] N. Miura, S. Oonishi, K. R. Prasad, Electrochemical Solid-State Letters 2004, 7, A247-A249.
[25] C. C. Hu, C. M. Huang, K. H. Chang, Journal of Power Sources 2008, 185, 1594-1597.
[26] M. Nakayama, A. Tanaka, Y. Sato, T. Tonosaki, K. Ogura, Langmuir 2005, 21, 5907-5913.
[27] A. González, E. Goikolea, J. A. Barrena, R. Mysyk, Renewable and Sustainable Energy Reviews 2016, 58, 1189-1206.
[28] A. Balducci, W. A. Henderson, M. Mastragostino, S. Passerini, P. Simon, F. Soavi, Electrochimica Acta 2005, 50, 2233-2237.
84
[29] B. Muthulakshmi, D. Kalpana, S. Pitchumani, N. G. Renganathan, Journal of Power Sources 2006, 158, 1533-1537.
[30] J. H. Kim, Y. S. Lee, A. K. Sharma, C. G. Liu, Electrochimica Acta 2006, 52, 1727-1732.
[31] Y. B. He, G. R. Li, Z. L. Wang, C. Y. Su, Y. X. Tong, Energy & Environmental Science 2011, 4, 1288-1292.
[32] Y. Hou, Y. Cheng, T. Hobson, J. Liu, Nano Letters 2010, 10, 2727-2733.
[33] P. Simon, Y. Gogotsi, Nature materials 2008, 7, 845-854.
[34] L. Li, Z. A. Hu, N. An, Y. Y. Yang, Z. M. Li, H. Y. Wu, The Journal of Physical Chemistry C 2014, 118, 22865-22872.
[35] S. Y. Huang, P. Ganesan, S. Park, B. N. Popov, Journal of American Chemical Society 2009, 131, 13898–13899.
[36] K. Kinoshita, Carbon : electrochemical and physicochemical properties, Wiley, New York, 1988.
[37] Z. Li, J. Wang, S. Liu, X. Liu, S. Yang, Journal of Power Sources 2011, 196, 8160-8165.
[38] G. R. Li, Z. L. Wang, F. L. Zheng, Y. N. Ou, Y. X. Tong, Journal of Materials Chemistry 2011, 21, 4217-4221.
[39] Q. Li, Z. L. Wang, G. R. Li, R. Guo, L. X. Ding, Y. X. Tong, Nano Letters 2012, 12, 3803-3807.
[40] Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao, Advanced Materials 2009, 21, 4087-4108.
[41] Y. Zhang, M. K. Ram, E. K. Stefanakos, D. Y. Goswami, Journal of Nanomaterials 2012, 2012, 1-22.
85
[42] S. Murali, S. Prasertpalichat, C. C. Huang, D. Cann, R. Yimnirun, J. F. Conley, Journal of Electrochemical. Society 2011, 158, G211-G216.
[43] S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, J. Liu, Nature Nanotechnology 2011, 6, 506-510.
[44] J. H. Na, M. Kitamura, M. Arita, Y. Arakawa, Applied Physics Letters 2009, 95, 253303-253303.
[45] P. Sudhagar, R. S. Kumar, J. H. Jung, W. Cho, R. Sathyamoorthy, J. Won, Y. S. Kang, Materials Reserch Bulletin 2011, 46, 1473-1479.
[46] Z. L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, S. Xu, Materials Science Engineering: R: Reports 2010, 70, 320-329.
[47] J. Xu, J. Han, Y. Zhang, Y. Sun, B. Xie, Sensors and Actuators. B: Chemical 2008, 132, 334-339.
[48] C. Y. Lu, S. J. Chang, S. P. Chang, C. T. Lee, C. F. Kuo, H. M. Chang, Y. Z. Chiou, C. L. Hsu, I. C. Chen, Applied Physics Letters 2006, 89, 153101-153103.
[49] S. Cho, S. Kim, J. W. Jang, S. H. Jung, E. Oh, B. R. Lee, K. H. Lee, The Journal of Physical Chemistry C 2009, 113, 10452–10458.
[50] D. Cai, H. Huang, D. Wang, B. Liu, L. Wang, Y. Liu, Q. Li, T. Wang, ACS Applied Materials & Interfaces 2014, 6, 15905-15912.
[51] I. Shakir, Z. Ali, J. Bae, J. Park, D. J. Kang, RSC Advances 2014, 4, 6324-6329.
[52] D. S. Kong, J. M. Wang, H. B. Shao, J. Q. Zhang, C. N. Cao, Journal of Alloys and Compdounds 2011, 509, 5611-5616.
[53] Z. Pu, Q. Liu, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, X. Sun, Electrochimica Acta 2013, 109, 252-255.
[54] Z. Xing, Q. Chu, X. Ren, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, X. Sun, Journal of Power Sources 2014, 245, 463-467.
86
[55] 胡啟章, 電化學原理與方法, Fundamentals and methods of electrochemistry, 初版 ed., 五南, 台北市, 2002.
[56] A. J. Bard, L. R. Faulkner, Electrochemical methods : fundamentals and applications, 2nd ed., John Wiley, New York, 2001.
[57] R. K. Pandey, S. N. Sahu, S. Chandra, Handbook of semiconductor electrodeposition, M. Dekker, New York, 1996.
[58] http://highscope.ch.ntu.edu.tw/wordpress/?p=4911, 科學Online.
[59] 郭鶴桐, 基礎電化學及其測量, 化學工業出版社, 2009.
[60] C. M. d. A. F. S. O. Pagotto Jr., M. Ballester, Surface and Coatings Technology 1999, 122, 10–13.
[61] K. Nomura, N. Shibata, M. Maeda, Journal of The Electrochemical Society 2002, 149, F76-F80.
[62] K. M. McPeak, T. P. Le, N. G. Britton, Z. S. Nickolov, Y. A. Elabd, J. B. Baxter, Langmuir 2011, 27, 3672-3677.
[63] V. Strano, R. G. Urso, M. Scuderi, K. O. Iwu, F. Simone, E. Ciliberto, C. Spinella, S. Mirabella, The Journal of Physical Chemistry C 2014, 118, 28189-28195.
[64] S. Guillemin, L. Rapenne, H. Roussel, E. Sarigiannidou, G. Brémond, V. Consonni, The Journal of Physical Chemistry C 2013, 117, 20738-20745.
[65] K. Govender, D. S. Boyle, P. B. Kenway, P. O'Brien, Journal of Materials Chemistry 2004, 14, 2575-2591.
[66] Y. Sun, D. J. Riley, M. N. R. Ashfold, The Journal of Physical Chemistry B 2006, 110, 15186-15192.
[67] A. Sugunan, H. C. Warad, M. Boman, J. Dutta, Journal of Sol-Gel Science and Technology 2006, 39, 49-56.
87
[68] H. M. Cheng, W. H. Chiu, C. H. Lee, S. . Tsai, W. F. Hsieh, Journal of Physical Chemistry C 2008, 112, 16359-16364.
[69] J. C. Chen, C. T. Hsu, C. C. Hu, Journal of Power Sources 2014, 253, 205-213.
[70] F. Gauthard, Journal of Catalysis 2003, 220, 182-191.
[71] C. C. Hu, J. C. Chen, K. H. Chang, Journal of Power Sources 2013, 221, 128-133.
[72] G. H. A. T. P. V. Kamath, Chemistry Materials 2000, 12, 1195-1204.
[73] M. S. Wu, K. C. Huang, Chemical Communications 2011, 47, 12122-12124.
[74] J. Liu, Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, Y. Hu, X. Huang, Chemistry Materials 2010, 22, 212-217.
[75] N. Eliaz, M. Eliyahu, Journal of Biomedical Materials Reserch Part A 2007, 80, 621-634.
[76] C. Y. Chen, C. C. Hu, Journal of Power Sources 2002, 111, 137-144.
[77] W. M. R. D. Wanger, L. E. Davis, J. F. Moulder, G. E.Muilenberg, Handbook of X Ray Photoelectron Spectroscopy, Perkin-Elmer Corp., 1979.
[78] G. H. A. Therese, P. V. Kamath, Chemistry Materials 2000, 12, 1195-1204.
[79] M. S. Wu, J. F. Wu, Journal of Power Sources 2013, 240, 397-403.
[80] X. Wang, International Journal of Hydrogen Energy 2004, 29, 967-972.
[81] Z. Chang, H. Li, H. Tang, X. Z. Yuan, H. Wang, International Journal of Hydrogen Energy 2009, 34, 2435-2439.
[82] A. Van der Ven, D. Morgan, Y. S. Meng, G. Ceder, Journal of The Electrochemical Society 2006, 153, A210-215.
[83] P. Oliva, J. Leonardi, J. F. Laurent, Journal of Power Sources 1982, 8, 229 - 255.
88
[84] D.D. MacDonald, B.G. Pound, S.J. Lenhart, Journal of Power Sources 1990, 29, 477 - 502.
[85] X. P. Gao, H. X. Yang, Energy & Environmental Science 2010, 3, 174-189.
[86] Y. Zhang, L. Li, H. Su, W. Huang, X. Dong, Journal of Materials Chemistry A 2015, 3, 43-59.
[87] J. Zhao, J. Chen, S. Xu, M. Shao, Q. Zhang, F. Wei, J. Ma, M. Wei, D. G. Evans, X. Duan, Advanced Functional Materials 2014, 24, 2938-2946.
[88] P. W. Menezes, A. Indra, O. Levy, K. Kailasam, V. Gutkin, J. Pfrommer, M. Driess, Chemical Communications 2015, 51, 5005-5008.
[89] H. Nan, W. Ma, Z. Gu, B. Geng, X. Zhang, RSC Advances 2015, 5, 24607-24614.
[90] N. M. S. Rodrigues, A. K. Shukla, Journal of Applied Electrochemistry 1998, 28, 1235-1241.
[91] C. C. Hu, T. W. Tsou, Electrochemistry Communications 2002, 4, 105–109.
[92] J. Wei, M. Cheong, N. Nagarajan, I. Zhitomirsky, ECS Transactions 2007, 3, 1-9.
[93] S. Hassan, M. Suzuki, A. A. El-Moneim, American Journal of Materials Science 2012, 2, 11-14.
[94] J. Xiao, S. Yang, RSC Advances 2011, 1, 588-595.
[95] Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, D. Chen, G. Shen, Journal of Materials Chemistry 2012, 22, 21647-21653.
[96] R. Zou, K. Xu, T. Wang, G. He, Q. Liu, X. Liu, Z. Zhang, J. Hu, Journal of Materials Chemistry A 2013, 1, 8560-8566.
[97] S. Giri, D. Ghosh, C. K. Das, Dalton Transactions 2013, 42, 14361-14364.
89
[98] M. Zhang, S. Guo, L. Zheng, G. Zhang, Z. Hao, L. Kang, Z. H. Liu, Electrochimica Acta 2013, 87, 546-553.
[99] K. V. Sankar, S. Surendran, K. Pandi, A. M. Allin, V. D. Nithya, Y. S. Lee, R. K. Selvan, RSC Advances 2015, 5, 27649-27656.
[100] A. G. Tekerlekopoulou, S. Pavlou, D. V. Vayenas, Journal of Chemical Technology and Biotechnology 2013, 88, 751-773.
[101] Y. Ma, C. W. Tai, R. Younesi, T. Gustafsson, J. Y. Lee, K. Edström, Chemistry Materials 2015, 27, 7698-7709.