簡易檢索 / 詳目顯示

研究生: 冀天齊
Ji, Tien-Chi
論文名稱: 金屬氧化物作為鋰離子電池陽極材料
Metal Oxides as an Anode Material for Li-ion Batteries
指導教授: 游萃蓉
Yew, Tri-Rung
口試委員: 李紫原
Lee, Chi-Young
陳盈潔
Chen, Ying-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 81
中文關鍵詞: 鋰離子電池金屬氧化物氧化鐵電化學氧化錫氧化矽
外文關鍵詞: Li-ion battery, Metal oxides, Fe2O3, Electrochemistry, SnO2, SiO2
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過不同原子比例混合SiO2-SnO2、SiO2-Fe2O3和SnO2-Fe2O3金屬氧化物粉末,作為鋰離子電池陽極活物,並藉由改變活物中不同氧化物的比例,用以探討活物比例和鋰離子電池效能表現之間的關係。
    本研究利用掃描式電子顯微鏡 (Scanning Electron Microscopy) 觀察金屬氧化物製備電極之表面形貌,並使用能量散佈分析儀檢視金屬氧化物元素在電極上的分佈狀況,也使用X-ray繞射分析儀 (X-ray Diffraction) 檢測金屬氧化物製備之電極板,分析電極板上金屬氧化物的晶體結構。
    本研究於電池循環壽命測試和交流阻抗量測中,分析了金屬氧化物在不同元素成分不同比例之下,用以作為鋰離子電池陽極材料之電性表現的評估,經比較得出,比例SiO2:SnO2:Fe2O3=1:1:3 (SiSnFe113)作為鋰離子電池陽極材料能夠有極佳的電性表現。
    經實驗過後,SiSnFe113 在100 mA/g (0.1 C) 的充放電電流密度下,電容量約為950 mAh/g,並且1000 mA/g的充放電電流密度下仍然能夠保持約450 mAh/g的電容量,實驗初始經過100 mA/g (0.1 C) 的電流充放電二十圈後,200 mA/g (0.2 C)、500 mA/g (0.5 C)、1000 mA/g (1 C) 和2000 mA/g (2 C) 的速率各充放電十圈後,再將充放電速率調為將電流密度調整回100 mA/g跑五圈,以檢視其回復的能力 (Recovery),此SiSnFe113電池在此情況下,在第六十五圈仍然可以保持電容量為814 mAh/g,即77% 的電容量保持率 (Capacity Retention),顯示此SiSnFe113氧化物為一具潛力的鋰離子陽極材料。


    In this work, different metal oxide systems, SiO2-SnO2, SiO2-Fe2O3 and SnO2-Fe2O3 with different ratios in compositions were prepared by ceramic processes. By varying the molar ratio of metal-oxide elements, the performance of different lithium-ion batteries fabricated by SiO2-SnO2, SiO2-Fe2O3 and SnO2-Fe2O3 materials was investigated to study the relationship between the composition of anode materials and the performance of lithium-ion batteries.
    The morphology, composition distribution and the structure of electrodes fabricated in this work were characterized by field emission scanning electron microscope (FESEM), energy dispersive x-ray spectrometer (EDX) and X-ray diffraction (XRD).
    The performance of fabricated batteries was measured by galvanostatic charge-discharge measurement (GCD) and electrochemical impedance spectroscopy (EIS) analyses.
    After comparing the performance of all the batteries fabricated in these three systems, it shows that an active material with composition of SiO2:SnO2:Fe2O3=1:1:3 (SiSnFe113) is an potential anode material for lithium-ion batteries (LIBs).
    This SiSnFe113 oxide can be utilized for LIBs applications as an anode material, showing a high reversible capacity of ~450 mAh/g while charging and discharging at a current density of 1000 mA/g and a capacity retention of 77% after being operated at a current density of 100 mA/g (0.1 C) for 20 cycles, 200 mA/g (0.2 C), 500 mA/g (0.5 C), 1000 mA/g (1 C) and 2000 mA/g (2 C) for 10 cycles respectively, and 100 mA/g for 5 cycles in the last step. It suggests that this SiSnFe113 oxide could be a potential anode material for lithium-ion batteries.

    誌謝 I 摘要 IV Abstract VI 目錄 VIII 圖目錄 X 表目錄 XIII 第一章 緒論 1 第二章 文獻回顧 3 2.1 鋰離子電池簡介 3 2.1.1 鋰離子電池工作原理 3 2.2 二氧化矽作為鋰離子電池陽極材料 3 2.3 二氧化錫作為鋰離子電池陽極材料 4 2.4 三氧化二鐵作為鋰離子電池陽極材料 5 2.5 複合金屬氧化物作為鋰離子電池陽極材料 5 第三章 實驗流程與方法 7 3.1 實驗步驟 9 3.1.1 金屬氧化物材料製備 9 3.1.2 金屬氧化物鋰離子電極製備 11 3.1.3 金屬氧化物鈕扣型鋰離子電池組裝 14 3.2 儀器簡介 17 3.2.1 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope) 17 3.2.2 X-光繞射分析儀 (X-ray Diffractometer, XRD) 19 3.2.3 電池循環壽命測試 21 3.2.4 交流阻抗分析 22 第四章 實驗結果與討論 27 4.1 金屬氧化物作為鋰離子電池電極 27 4.1.1 實驗設計與實驗結果 27 4.2 金屬氧化物作為鋰離子電池陽極材料電化學分析 39 4.2.1 SiO2-SnO2系統電化學分析 39 4.2.2 SiO2-Fe2O3系統電化學分析 52 4.2.3 SnO2-Fe2O3系統電化學分析 63 4.3 綜合討論 72 第五章 結論 76 第六章 未來展望 78 參考文獻 79 本研究產出之論文發表 81

    1. Yoshino, A., 1 - Development of the Lithium-Ion Battery and Recent Technological Trends, in Lithium-Ion Batteries, G. Pistoia, Editor. 2014, Elsevier: Amsterdam. p. 1-20.
    2. Ji, J., et al., Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv Mater, 2013. 25(33): p. 4673-7.
    3. Zhu, C., et al., TiO2 nanotube@ SnO2 nanoflake core–branch arrays for lithium-ion battery anode. 2014. 4: p. 105-112.
    4. Cao, K., et al., Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. 2017. 1(11): p. 2213-2242.
    5. Ma, D., Z. Cao, and A. Hu, Si-Based Anode Materials for Li-Ion Batteries: A Mini Review. Nano-Micro Letters, 2014. 6(4): p. 347-358.
    6. Kim, H., et al., A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed Engl, 2010. 49(12): p. 2146-9.
    7. Etacheri, V., et al., Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. 2011. 28(1): p. 965-976.
    8. Li, X., et al., Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. 2012. 22(22): p. 11014-11017.
    9. Zhao, Y., et al., Recent developments and understanding of novel mixed transition‐metal oxides as anodes in lithium ion batteries. 2016. 6(8): p. 1502175.
    10. Chang, W.-S., et al., Quartz (SiO2): a new energy storage anode material for Li-ion batteries. 2012. 5(5): p. 6895-6899.
    11. Zou, L., et al., Investigations on the modified natural graphite as anode materials in lithium ion battery. 2008. 69(5-6): p. 1265-1271.
    12. Xu, X., et al., SiO2@ SnO2/graphene composite with a coating and hierarchical structure as high performance anode material for lithium ion battery. 2016. 677: p. 237-244.
    13. Han, S., et al., Simple synthesis of hollow tin dioxide microspheres and their application to lithium‐ion battery anodes. 2005. 15(11): p. 1845-1850.
    14. Huang, B., et al., Novel Carbon‐Encapsulated Porous SnO2 Anode for Lithium‐Ion Batteries with Much Improved Cyclic Stability. 2016. 12(14): p. 1945-1955.
    15. Liu, Q., et al., Carbon‐coated hierarchical SnO2 hollow spheres for lithium ion batteries. 2016. 22(17): p. 5853-5857.
    16. Cao, K., et al., 3D hierarchical porous α-Fe2O3 nanosheets for high‐performance lithium‐ion batteries. 2015. 5(4): p. 1401421.
    17. Jiang, Y., et al., Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. 2014. 4: p. 23-30.
    18. Cherian, C.T., et al., Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. 2012. 22(24): p. 12198-12204.
    19. Zhang, J., et al., Mesoporous Fe2O3 nanoparticles as high performance anode materials for lithium-ion batteries. 2013. 29: p. 17-20.
    20. Deka, M. and A.J.J.o.P.S. Kumar, Electrical and electrochemical studies of poly (vinylidene fluoride)–clay nanocomposite gel polymer electrolytes for Li-ion batteries. 2011. 196(3): p. 1358-1364.
    21. Park, M.S., et al., Preparation and electrochemical properties of SnO2 nanowires for application in lithium‐ion batteries. 2007. 46(5): p. 750-753.
    22. Aravindan, V., et al., Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries. 2013. 2(5): p. 720-725.
    23. Sun, B., et al., Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. 2010. 114(44): p. 18753-18761.
    24. Zhou, W., et al., Epitaxial growth of branched α‐Fe2O3/SnO2 nano‐heterostructures with improved lithium‐ion battery performance. 2011. 21(13): p. 2439-2445.
    25. Hu, R., et al., Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial coulombic efficiency and stable capacities for lithium storage. 2017. 29(13): p. 1605006.
    26. Kannan, A.M., et al., High capacity surface-modified LiCoO2 cathodes for lithium-ion batteries. 2003. 6(1): p. A16-A18.
    27. Jung, R., et al., Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. 2017. 164(7): p. A1361-A1377.
    28. Cho, Y.-D., G.T.-K. Fey, and H.-M.J.J.o.P.S. Kao, The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. 2009. 189(1): p. 256-262.
    29. Ahn, D. and X.J.E.C. Xiao, Extended lithium titanate cycling potential window with near zero capacity loss. 2011. 13(8): p. 796-799.

    QR CODE