研究生: |
黃楚涵 Huang, Chu-Hann |
---|---|
論文名稱: |
具一氧化氮緩釋功能之可注射仿貽貝黏覆蛋白新月形微球應用於腦創傷修復 Mussel-Inspired Injectable Self-Healing Microspheres Capable of Sustained Release of Nitrogen Oxide for Brain Traumatic Injury Repair |
指導教授: |
胡尚秀
Hu, Shang-Hsiu |
口試委員: |
黃玠誠
Huang, Chieh-Cheng 李亦淇 Lee, I-Chi 黃薇蓁 Huang, Wei-Chen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2023 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 微球 、微流道系統 、仿貽貝蛋白 、細胞黏附性水膠 、一氧化氮 、氣體治療 、腦創傷 |
外文關鍵詞: | Microspheres, Micro-fluidic system, Mussel-inspired chemicals, Self-adhesive hydrogel, S-nitrosoglutathione (GSNO), gas therapy, TBI |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
受損性腦創傷(TBI)為一種由外力造成大腦產生異質性的大腦損傷。造成大腦成斑痕阻礙新生細胞的進入損傷區域進行組織修復。嚴重的免疫反應也會造成受損區域無法修復,新生血管及再生神經細胞難以進入受損區域,使受損區域的組織難以修復,且影響腦神經在受損區域的訊號傳遞。
在組織工程中常以水膠進行填入腦受損區域,模擬細胞外間質以修復組織。傳統水膠形式雖具備高含水量、高生物相容性等優點卻缺少孔洞性以利細胞浸潤入受損區域造成修復效果受限。本研究將使用以PEGDA及Dextran為材料的水膠以微球形式填入腦損傷後造成的孔洞中進行組織修復。水膠由微流道系統製備以直徑約為150 μm 的微球形式注射入受損區空洞,具備雙層結構使微球具有裝載藥物及具備氣體協同治療的功能。微球雙層結構的內層中載入可釋放一氧化氮氣體之化合物,S-亞硝基穀胱甘肽(S-nitrosoglutathione, GSNO)。GSNO在雙層微球注入體內後會斷鍵並藉由微球的雙層結構緩釋出NO氣體,使受損區域免疫反應被抑制、促進受損組織血管新生。以PDA (Polydopamine) 修飾微球來改善PEGDA的高生物惰性使細胞無法貼附及增加材料黏附性。以兩步驟修飾微球,第一步在微流道晶片中載入外層水相使微球具備黏附性,第二步為通過微流道並以點光源照射行成微球後於表面塗布Polydopamine使其具有細胞黏附性。
在細胞實驗中,證實經PDA改質並具備NO釋放之微球對於NIH-3T3及胚胎神經幹細胞 (Neural Stem Cells, NSCs)沒有細胞毒性。藉由和NIH-3T3細胞共培養後展現微球的高度細胞貼附能力,對於胚胎神經幹細胞具備刺激神經分化的能力。在體內動物實驗中,透過治療後7及60天的組織切片染色結果評斷PEGDA微球植入受損區域有益於降低短期的免疫反應,但缺少長期免疫反應抑制及血管新生或是促使神經分化的效果。相比於未經治療的控制組,經PDA改質及GSNO載入的最終治療組有較低的星狀膠質細胞的佔比面積。受損區域周邊的新生血管及神經細胞佔比面積也有最高的增加幅度。在動物行為實驗中,最終治療組也展示出最佳的四肢運用能力和靈活度。
由以上實驗結果得知,本文所製作出經PDA改質的微球因具有球體間的黏覆性使其可形成更穩定的支架,降低長期免疫反應。在載入GSNO後可利用雙層結構緩是一氧化氮氣體並促進神經細胞分化及生長,提供一種有效的腦創傷治療方式。
Traumatic brain injury (TBI) caused by external forces usually produce heterogeneous damage in the brain. The main reason for the deterioration of the injured area of the brain is that astrocytes accumulate to the injured area after brain injury, and then generate serious scars that would prevent cells from entering the injured area for tissue repair. Severe immune response leads to difficult revascularization and cellular infiltration, making the tissue in the injured area difficult to repair, and affecting the signal transmission of cranial nerves in the injured area.
In tissue engineering, hydrogel is often used to fill the injured region of the brain to simulate extracellular matrix to repair the tissue. Although the traditional hydrogel has the advantages of high-water content and high biocompatibility, it lacks the porosity to facilitate the infiltration of cells into the damaged area, resulting in limited repair effect. In this study, we use PEGDA and Dextran as materials to fill in the cavity caused by brain injury in the form of microspheres for tissue repair. The hydrogel is prepared by micro-fluidic system and can be injected into the cavity in the form of microspheres (MPs) with a diameter of about 150 μm. S-nitrosoglutathione (GSNO) are loaded into the inner layer of the microsphere’s bilayer structure. GSNO breaks bonds and can slowly releases NO gas under room temperature due to the double-layer structure of microspheres. Local NO release can inhibit the immune response in the damaged region and promotes angiogenesis and neuro-regeneration. Modified microspheres with PDA (Polydopamine)will alter the PEGDA MPs’ characteristic from bio inertness to high cellular affinity. The microspheres are modified by PDA in two steps. The first step is loading polydopamine in the outer water phase of the micro-fluidic system to make microspheres possess self-healing ability. The second step is to coat a thin layer of polydopamine on the surface of microspheres, which can make microspheres cell-adhesive and can anchor neural growth factor on the outer side of MPs.
1. Khellaf, A., D.Z. Khan, and A. Helmy, Recent advances in traumatic brain injury. Journal of Neurology, 2019. 266(11): p. 2878-2889.
2. Xiong, Y., A. Mahmood, and M. Chopp, Emerging treatments for traumatic brain injury. Expert Opin Emerg Drugs, 2009. 14(1): p. 67-84.
3. Burda, J.E., A.M. Bernstein, and M.V. Sofroniew, Astrocyte roles in traumatic brain injury. Experimental Neurology, 2016. 275: p. 305-315.
4. Mena, J.H., et al., Effect of the modified Glasgow Coma Scale score criteria for mild traumatic brain injury on mortality prediction: comparing classic and modified Glasgow Coma Scale score model scores of 13. J Trauma, 2011. 71(5): p. 1185-92; discussion 1193.
5. Bagiella, E., et al., Measuring outcome in traumatic brain injury treatment trials: recommendations from the traumatic brain injury clinical trials network. The Journal of head trauma rehabilitation, 2010. 25(5): p. 375-382.
6. Trounson, A. and C. McDonald, Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell, 2015. 17: p. 11.
7. Xiong, Y., A. Mahmood, and M. Chopp, Animal models of traumatic brain injury. Nature Reviews Neuroscience, 2013. 14(2): p. 128-142.
8. Alluri, H., et al., Blood-brain barrier dysfunction following traumatic brain injury. Metab Brain Dis, 2015. 30(5): p. 1093-104.
9. Maas, A.I.R., N. Stocchetti, and R. Bullock, Moderate and severe traumatic brain injury in adults. The Lancet Neurology, 2008. 7(8): p. 728-741.
10. Lee, L.L., et al., Neuroprotection in the rat lateral fluid percussion model of traumatic brain injury by SNX-185, an N-type voltage-gated calcium channel blocker. Exp Neurol, 2004. 190(1): p. 70-8.
11. Weber, J.T., Altered calcium signaling following traumatic brain injury. Frontiers in pharmacology, 2012. 3: p. 60-60.
12. Slemmer, J.E., et al., Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem, 2008. 15(4): p. 404-14.
13. Martinez, B.I. and S.E. Stabenfeldt, Current trends in biomarker discovery and analysis tools for traumatic brain injury. Journal of Biological Engineering, 2019. 13(1): p. 16.
14. Blackburn, D., et al., Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia, 2009. 57(12): p. 1251-64.
15. Neary, J.T., et al., Traumatic injury activates protein kinase B/Akt in cultured astrocytes: role of extracellular ATP and P2 purinergic receptors. J Neurotrauma, 2005. 22(4): p. 491-500.
16. Ralay Ranaivo, H., et al., Mild stretch-induced injury increases susceptibility to interleukin-1β-induced release of matrix metalloproteinase-9 from astrocytes. J Neurotrauma, 2011. 28(9): p. 1757-66.
17. Roth, T.L., et al., Transcranial amelioration of inflammation and cell death after brain injury. Nature, 2014. 505(7482): p. 223-8.
18. Gorina, R., et al., Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia, 2011. 59(2): p. 242-55.
19. Xu, H., et al., The Polarization States of Microglia in TBI: A New Paradigm for Pharmacological Intervention. Neural Plasticity, 2017. 2017: p. 5405104.
20. Kim, J.Y., N. Kim, and M.A. Yenari, Mechanisms and potential therapeutic applications of microglial activation after brain injury. CNS neuroscience & therapeutics, 2015. 21(4): p. 309-319.
21. Chio, C.-C., M.-T. Lin, and C.-P. Chang, Microglial Activation as a Compelling Target for Treating Acute Traumatic Brain Injury. Current Medicinal Chemistry, 2015. 22(6): p. 759-770.
22. Lee, S.W., et al., The role of microglial inflammasome activation in pyroptotic cell death following penetrating traumatic brain injury. Journal of Neuroinflammation, 2019. 16(1): p. 27.
23. Yang, Y., et al., Inflammation leads to distinct populations of extracellular vesicles from microglia. Journal of Neuroinflammation, 2018. 15(1): p. 168.
24. Karve, I.P., J.M. Taylor, and P.J. Crack, The contribution of astrocytes and microglia to traumatic brain injury. British journal of pharmacology, 2016. 173(4): p. 692-702.
25. Kalogeris, T., Y. Bao, and R.J. Korthuis, Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology, 2014. 2: p. 702-714.
26. Schild, L., et al., Brain mitochondria are primed by moderate Ca2+ rise upon hypoxia/reoxygenation for functional breakdown and morphological disintegration. Journal of Biological Chemistry, 2003. 278(28): p. 25454-25460.
27. Wingrave, J.M., et al., Early induction of secondary injury factors causing activation of calpain and mitochondria‐mediated neuronal apoptosis following spinal cord injury in rats. Journal of neuroscience research, 2003. 73(1): p. 95-104.
28. Friberg, H. and T. Wieloch, Mitochondrial permeability transition in acute neurodegeneration. Biochimie, 2002. 84(2-3): p. 241-250.
29. Anderson, M.F. and N.R. Sims, The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions. Journal of neurochemistry, 2002. 81(3): p. 541-549.
30. Starkov, A.A., C. Chinopoulos, and G. Fiskum, Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium, 2004. 36(3): p. 257-264.
31. Qian, F., et al., In Situ implantable, post-trauma microenvironment-responsive, ROS Depletion Hydrogels for the treatment of Traumatic brain injury. Biomaterials, 2021. 270: p. 120675.
32. Wang, L., et al., Porous and responsive hydrogels for cell therapy. Current Opinion in Colloid & Interface Science, 2018. 38: p. 135-157.
33. Aisenbrey, E.A. and S.J. Bryant, A MMP7‐sensitive photoclickable biomimetic hydrogel for MSC encapsulation towards engineering human cartilage. Journal of Biomedical Materials Research Part A, 2018. 106(8): p. 2344-2355.
34. Karumbaiah, L., et al., Chondroitin sulfate glycosaminoglycan hydrogels create endogenous niches for neural stem cells. Bioconjugate chemistry, 2015. 26(12): p. 2336-2349.
35. Pêgo, A.P., et al., Regenerative medicine for the treatment of spinal cord injury: more than just promises? Journal of Cellular and Molecular Medicine, 2012. 16(11): p. 2564-2582.
36. Liu, M., et al., Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale, 2016. 8(38): p. 16819-16840.
37. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368-373.
38. Yuan, H., et al., Phase‐Separation‐Induced Formation of Janus Droplets Based on Aqueous Two‐Phase Systems. Macromolecular Chemistry and Physics, 2017. 218(2): p. 1600422.
39. Nih, L.R., et al., Injection of Microporous Annealing Particle (MAP) Hydrogels in the Stroke Cavity Reduces Gliosis and Inflammation and Promotes NPC Migration to the Lesion. Adv Mater, 2017. 29(32).
40. Liang, Y., et al., Adhesive Hemostatic Conducting Injectable Composite Hydrogels with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full-Thickness Skin Regeneration During Wound Healing. Small, 2019. 15(12): p. e1900046.
41. Behrens, A.M., M.J. Sikorski, and P. Kofinas, Hemostatic strategies for traumatic and surgical bleeding. Journal of Biomedical Materials Research Part A, 2014. 102(11): p. 4182-4194.
42. Tan, H. and K.G. Marra, Injectable, biodegradable hydrogels for tissue engineering applications. Materials, 2010. 3(3): p. 1746-1767.
43. Mehdizadeh, M., et al., Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials, 2012. 33(32): p. 7972-7983.
44. Cheng, T.-Y., et al., Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials, 2013. 34(8): p. 2005-2016.
45. Zhao, Y.-Z., et al., Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury. Acta biomaterialia, 2016. 29: p. 71-80.
46. Latchoumane, C.-F.V., et al., Engineered glycomaterial implants orchestrate large-scale functional repair of brain tissue chronically after severe traumatic brain injury. Science Advances, 2021. 7(10): p. eabe0207.
47. Kord Forooshani, P. and B.P. Lee, Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. Journal of Polymer Science Part A: Polymer Chemistry, 2017. 55(1): p. 9-33.
48. Tseng, T.C., et al., An injectable, self‐healing hydrogel to repair the central nervous system. Advanced materials, 2015. 27(23): p. 3518-3524.
49. Ryu, J.H., et al., Catechol-Functionalized Chitosan/Pluronic Hydrogels for Tissue Adhesives and Hemostatic Materials. Biomacromolecules, 2011. 12(7): p. 2653-2659.
50. Stewart, R.J., et al., The role of coacervation and phase transitions in the sandcastle worm adhesive system. Advances in Colloid and Interface Science, 2017. 239: p. 88-96.
51. Estrada, J.C., et al., Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy. Cell Death Dis., 2013. 4: p. e691.
52. Xie, C., et al., Mussel‐inspired hydrogels for self‐adhesive bioelectronics. Advanced Functional Materials, 2020. 30(25): p. 1909954.
53. Ho, A.Y.Y., et al., Fabrication and Analysis of Gecko-Inspired Hierarchical Polymer Nanosetae. ACS Nano, 2011. 5(3): p. 1897-1906.
54. Zhou, M., et al., Design of gecko-inspired fibrillar surfaces with strong attachment and easy-removal properties: a numerical analysis of peel-zone. Journal of the Royal Society Interface, 2012. 9(75): p. 2424-2436.
55. Saiz‐Poseu, J., et al., The chemistry behind catechol‐based adhesion. Angewandte Chemie International Edition, 2019. 58(3): p. 696-714.
56. Yang, J., et al., Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Advanced Functional Materials, 2020. 30(2): p. 1901693.
57. Liu, J.-S., et al., Polydopamine Nanoparticles for Deep Brain Ablation via Near-Infrared Irradiation. ACS Biomaterials Science & Engineering, 2020. 6(1): p. 664-672.
58. Park, J., et al., Polydopamine-Based Simple and Versatile Surface Modification of Polymeric Nano Drug Carriers. ACS Nano, 2014. 8(4): p. 3347-3356.
59. Ku, S.H. and C.B. Park, Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials, 2010. 31(36): p. 9431-9437.
60. Deng, Z., et al., Biofunction of Polydopamine Coating in Stem Cell Culture. ACS Applied Materials & Interfaces, 2021. 13(9): p. 10748-10759.
61. Han, L., et al., Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Materials, 2017. 9(4): p. e372-e372.
62. Han, L., et al., A mussel‐inspired conductive, self‐adhesive, and self‐healable tough hydrogel as cell stimulators and implantable bioelectronics. Small, 2017. 13(2): p. 1601916.
63. Han, L., et al., Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization. ACS Nano, 2017. 11(3): p. 2561-2574.
64. Lin, C.C. and S.J. Fu, Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats. Mater Sci Eng C Mater Biol Appl, 2016. 58: p. 254-63.
65. Yang, Y., et al., A Polydopamine-Functionalized Carbon Microfibrous Scaffold Accelerates the Development of Neural Stem Cells. Frontiers in Bioengineering and Biotechnology, 2020. 8.
66. Battaglini, M., et al., Polydopamine Nanoparticles as an Organic and Biodegradable Multitasking Tool for Neuroprotection and Remote Neuronal Stimulation. ACS Applied Materials & Interfaces, 2020. 12(32): p. 35782-35798.
67. Su, H., W.B. Lau, and X.L. Ma, Hypoadiponectinaemia in diabetes mellitus type 2: molecular mechanisms and clinical significance. Clinical and Experimental Pharmacology and Physiology, 2011. 38(12): p. 897-904.
68. Deng, J., et al., Neuroprotective gases–fantasy or reality for clinical use? Progress in neurobiology, 2014. 115: p. 210-245.
69. Toda, N., K. Ayajiki, and T. Okamura, Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacological reviews, 2009. 61(1): p. 62-97.
70. Liu, P., et al., Inhaled nitric oxide improves short term memory and reduces the inflammatory reaction in a mouse model of mild traumatic brain injury. Brain Research, 2013. 1522: p. 67-75.
71. Sato, K., et al., Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. The Journal of Immunology, 2001. 166(6): p. 4185-4194.
72. Grassi, F., et al., Hydrogen sulfide is a novel regulator of bone formation implicated in the bone loss induced by estrogen deficiency. Journal of Bone and Mineral Research, 2016. 31(5): p. 949-963.
73. Meffert, M.K., B.A. Premack, and H. Schulman, Nitric oxide stimulates Ca2+-independent synaptic vesicle release. Neuron, 1994. 12(6): p. 1235-1244.
74. Picón-Pagès, P., J. Garcia-Buendia, and F.J. Muñoz, Functions and dysfunctions of nitric oxide in brain. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2019. 1865(8): p. 1949-1967.
75. Förstermann, U. and W.C. Sessa, Nitric oxide synthases: regulation and function. Eur Heart J, 2012. 33(7): p. 829-37, 837a-837d.
76. Freedman, J.E. and J. Loscalzo, Nitric oxide and its relationship to thrombotic disorders. J Thromb Haemost, 2003. 1(6): p. 1183-8.
77. Thomas, D.D., et al., The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med, 2008. 45(1): p. 18-31.
78. Fang, F.C., Antimicrobial actions of reactive oxygen species. mBio, 2011. 2(5).
79. Hossain, S., L.M. Nisbett, and E.M. Boon, Discovery of Two Bacterial Nitric Oxide-Responsive Proteins and Their Roles in Bacterial Biofilm Regulation. Acc Chem Res, 2017. 50(7): p. 1633-1639.
80. Paricio, L., B. Neufeld, and M. Reynolds, Combined influence of nitric oxide and surface roughness in biofilm reduction across bacteria strains. Biointerphases, 2019. 14(2): p. 021004.
81. Frank, S., et al., Nitric oxide drives skin repair: novel functions of an established mediator. Kidney Int, 2002. 61(3): p. 882-8.
82. Wang, Y., M.R. Kibbe, and G.A. Ameer, Photo-crosslinked Biodegradable Elastomers for Controlled Nitric Oxide Delivery. Biomater Sci, 2013. 1(6): p. 625-632.
83. Champeau, M., et al., Supramolecular poly(acrylic acid)/F127 hydrogel with hydration-controlled nitric oxide release for enhancing wound healing. Acta Biomaterialia, 2018. 74: p. 312-325.
84. Doetsch, F., et al., EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron, 2002. 36(6): p. 1021-34.
85. Carreira, B.P., et al., Nitric Oxide Stimulates the Proliferation of Neural Stem Cells Bypassing the Epidermal Growth Factor Receptor. Stem Cells, 2010. 28(7): p. 1219-1230.
86. Regmi, S., et al., A three-dimensional assemblage of gingiva-derived mesenchymal stem cells and NO-releasing microspheres for improved differentiation. International Journal of Pharmaceutics, 2017. 520(1): p. 163-172.
87. Kluge, I., et al., S-nitrosoglutathione in rat cerebellum: identification and quantification by liquid chromatography-mass spectrometry. J Neurochem, 1997. 69(6): p. 2599-607.
88. Wang, P.G., et al., Nitric Oxide Donors: Chemical Activities and Biological Applications. Chemical Reviews, 2002. 102(4): p. 1091-1134.
89. Langford, E.J., et al., Inhibition of platelet activity by S-nitrosoglutathione during coronary angioplasty. Lancet, 1994. 344(8935): p. 1458-60.
90. Rauhala, P., T. Andoh, and C.C. Chiueh, Neuroprotective properties of nitric oxide and S-nitrosoglutathione. Toxicology and applied pharmacology, 2005. 207(2): p. 91-95.