研究生: |
黃俊儒 Huang, Jiun-Ru |
---|---|
論文名稱: |
奈米晶矽製作於分佈回饋式光學結構之特性分析與研究 Study and Analysis of Silicon Nanocrystals on Distribution Feedback Structure |
指導教授: |
李明昌
Lee, Ming-Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 奈米晶矽 、分佈回饋式光柵 |
外文關鍵詞: | nanocrystal si, DFB |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究利用奈米晶矽發光特性當作增益介質,藉由一維面射型分佈回饋式光學結構,形成一個微型共振腔,達到光強度放大及半高寬窄化的現象。首先利用自發輻射(A.S.E.)實驗量測了解奈米晶矽的增益係數,其淨增益係數為70cm-1。利用時域有限差分法(FDTD)模擬、布拉格繞射理論及耦合理論決定光柵週期為375nm,並希望設計為面射型,所以均分比(duty cycle)設計比例為0.7~0.8。製程部分,先利用電漿輔助化學氣相沉積系統,沉積富矽二氧化矽材料,並經過真空高溫退火1100度形成奈米晶矽,接著在鍍上透明導電電極以致於可利用電子束微影(E-beam),在鍍上一層二氧化矽,並利用電子束微影(E-beam)及介電層反應離子蝕刻二氧化矽,完成分佈式回饋光柵結構。量測實驗結果,發現在不同光柵週期其對應的共振波長也不同與理論相符,也觀察到光放大及半高寬窄化。當光柵週期375nm時,光在波長578nm被放大到3.3倍且其半高寬從原先無分佈回饋式光學結構的半高寬200nm窄化到60nm。
Abstract
The thesis focuses on study of light emission of silicon nanocrystals (nc-Si) on one-dimeensional distributed feedback (DFB) structures. First of all, we fabricated SiO2/SiOx/SiO2/Si substrate rib waveguides and used variable-stripe-length (VSL) method to calibrate optical gain coefficient of silicon nanocrystals. The measured optical gain and loss coefficients of the waveguide are 70cm-1and 14cm-1, respectively. Next, Finite difference time domain (FDTD) method, Bragg diffraction theory and coupled mode theory were utilized to design the grating period, grating depth and duty cycle. The optimized grating period and duty cycle are 375nm and 0.7~0.8, respectively, according to the simulation results. To fabricate n-Si DFB, silicon-rich oxide deposited by PECVD was first annealed at 1100°C in vaccum to form nanocrystalline silicon on quart substrate. Then ITO and SiO2 were deposited on the device surface and the DFB structures were patterned by electron beam lithography and the following reactive ion etching. From the measurement results, we observed narrowed photoluminescence (PL) and enhanced peak intensity on the nc-Si DFB structures, showing significant stimulated emission of silicon nanocrystals around the resonant wavelength depending on the designed grating period. For the grating period of 375nm, the FWHM of PL was narrowed form 200nm to 60nm and the intensity was amplified by 3.3 times at the resonant wavelength of 578nm.
參考資料:
[1]Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D.Navarro-Urrios, A. Pitanti,
R. Spano, and L. Pavesi ” Silicon Nanocrystals as an Enabling Material for Silicon Photonics” IEEE Vol. 97, 1250-1268(2009)
[2]L. T. Canham” Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers” Appl. Phys. Lett. 57, 1046 (1990)
[3]P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L.Meda, E. Grilli, and M. Guzzi, and M. Guzzi ”Room-temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers” Appl. Phys. Lett.66 851(1995)
[4]E. Werwa, A. A. Seraphin, L. A. Chiu, C. Zhou, and K. D. Kolenbrander “Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method” Appl. Phys. Lett. 64, 1821 (1994)
[5]D. W. Cooke, B. L. Bennett, E. H. Farnum, W. L. Hults, K. E. Sickafus, J. F. Smith, J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Portis “SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model” Appl. Phys. Lett. 68, 1663 (1996)
[6]T. Inokuma, Y. Wakayama, T. Muramoto, R. Aoki, Y. Kurata, and S. Hasegawa” Optical properties of Si clusters and Si nanocrystallites in high-temperature annealed SiOx films” J. Appl. Phys. 83, 2228 (1998);
[7]L. Pavesi, L. D.Negro, C. Mazzoleni, G. FranzoA and F. Priolo” Optical gain in Si nanocrystals” Nature, vol. 408 ,440-444(2000).
[8]D. S. Gardner and M. L. Brongersma,” Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology”, Opt. Mater. vol. 27,804–811, 2005.
[9] N. Daldosso,a G. Das, S. Larcheri, G. Mariotto, G. Dalba, and L. Pavesi” Silicon nanocrystal formation in annealed silicon-rich silicon oxide films preparedby plasma enhanced chemical vapor deposition”J.Appl.Phys.101 113510(2007)
[10]P. Muttia and G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, and L. Meda, E. Grilli and M. Guzzi” Room-temperature visible luminescence from silicon nano- crystals in silicon implanted SiO2 layers,”Appl.Phys.Lett. Vol.66 851-853(1995)
[11]S. Takeoka, M. Fujii and S. Hayashi, ”Size-dependent photoluminescence from surface-oxidized Si nanocrystal in a weak confininement regime”Phys.Rev.B,Vol.62 16820-16825(2000)
[12]G. Ledoux, J. Gong, F. Huisken, O. Guillois and C. Reynaud ,”Photoluminescence of size-separated Silicon anocrystals: Confirmation of quantum confinement” Appl.Phys. Lett, 80 4834-4836(2002)
[13]L. Ferraiolia , M. Cazzanellia, N. Daldossoa, V. Mullonib, P. Belluttib, S. Yercic, R. Turanc, A.N. Mikhaylovd, D. I. Tetelbaumd, L. Pavesia” Dielectric matrix influence on the photoluminescence properties of silicon nanocrystals” IEEE 225-227(2006)
[14]F. Voigt “Optoelectronic properties of size-selected silicon nanocrystals”, docserver.bis.uni-oldenburg.de 14(2006)27.
[15]G. Ledoux, O. guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, V. Paillard,
Phys. Rev. B, Vol.62 15942(2000)
[16]B. E. A. Saleh, M. C. Teich, ”Fundaments of Photonics” 2nd edn, Wiley & Sons, 2007
[17]M.D. Feit and J. A. Fleck, Jr.,“Light propagation in graded-index fiber,” Appl. Opt. Vol. 17, 3990 (1978).
[18]Y. Chung, and N. Dagli, “Assesssment of finite difference beam propagation method,” IEEE J. Quantum Electron., Vol. QE-26, pp. 1335-1339, (1990).
[19]A. Splett, M. Majd, and K. Petermann, “A novel beampropagation method for large refractive index steps and largepropagation distance,” IEEE Photon. Technol. Lett., Vol. 3, pp. 466-468, (1991).
[20]D. Yevick, and B. Hermansson, “Efficient beam propagation techniques,” IEEE J. Quantum Electron., Vol. QE-26, pp. 109-112, (1990).
[21]K. J. Kuhn, "Laser Engineering", Prentice Hell, USA ,1997.
[22]G. R. Lin, C. L. Wu, C.W. Lian, and H.C. Chang” Saturated small-signal gain of Si quantum dots embedded in SiO2 /SiOx /SiO2 strip-loaded waveguide amplifier made on quartz” Appl. Phys. Lett. Vol.95 021106 2009
[23]L.W. Caperson,” Threshold characteristics of mirrorless lasers”, J. Appl. Phys. Vol 48 256 (1977)
[24]Shaklee, K. L., Nahaory, R. E. & Leheny, R. F.“Optical gain in semiconductors”
J. Lumin., Vol.7 284-309(1973).
[25]Yariv, A. “Quantum Electronics” 2nd ed. Wiley & Sons, New York, 1974
[26]H. Kogelnik and C. V.Shank, ”Copuled-wave Theory of Distribution Feedback Lasers”, J.Appl.Phys, Vol. 43 2327(1972)
[27]W. Streifer, R. D. burnham, and D.R.Scifres,J.Opt.Soc.Am,66 (1976)12
[28]H. G. Shiraz and B.S.K. LO ” Distributed Feedback Laser Diodes”, Wiley ,1996
[29]Hermann A.Haus”wave and field in optoelectronics”中央出版 1984.
[30]J.T. Simpson, S.P. Withrow, C.W. White , Appl.Phy. A, VoL 77 57-61(2003)
[31]J. Yu, “Silicon Nanocrystal Laser”Lawrence Livermore National Laboratory March23 2005
[32]Y.C. Chang”A study of the emission characteristics of organic thin-film distributed feedback laser” Thesis of Institute of Optical Photonic National Tsing Hua University (2006)
[33]L. Dal Negro, P. Bettotti, M. Cazzanelli , D. Pacifici, L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements” Optics Communications Vol. 229 337 (2004)
[34]D. W. Samuel, Ebinazar B. Namdas and Graham A. Turnbull” How to recognize lasing” nature photonics, Vol. 3 546-549 (2009)
[35]K. Dohnalová, I. Pelant1, K. Kusová, P. Gilliot, M. Gallart, O. Crégut, J.L. Rehspringer, B. Hönerlage, T. Ostatnický and S. Bakardjeva ”Closely packed luminescent silicon nanocrystals in a distributed-feedback laser cavity” New Journal of Physics Vol.10 063014 (2008)
[36]M. Ghulinyan, D. Navarro-Urrios, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi” Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator”IEEE 225-227 (2008 )